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Abstract 

Land degradation is a significant environmental challenge that impacts over 1.5 billion people 
globally. Recent assessments indicate that approximately 23% of the Earth's surface is degraded, 
with alarming projections suggesting this could increase by up to 50% by 2050. Regions particularly 
vulnerable to severe degradation include Sub-Saharan Africa and South Asia, largely due to socio-
economic and climatic changes. Soil degradation is classified into three main forms: physical, 
chemical, and biological. These forms often interact and influence one another in various ways. 
Notably, biological degradation is frequently overlooked, despite the critical role of soil biology in 
maintaining healthy ecosystems. Soil microorganisms are essential for facilitating vital nutrient 
cycles, including nitrogen, carbon, sulfur, and water, and they also play a crucial antagonistic role 
against soil-borne plant pathogens. The virulence, growth, motility, and survival of these pathogens 
are significantly affected by soil degradation, thereby impacting the prevalence and severity of soil-
borne diseases. This paper provides insights into soil degradation, focusing mainly on biological 
degradation and the processes and human activities that contribute to it. It discusses the impacts of 
biological degradation and other forms on soil-borne diseases and explores their interactions, while 
also outlining specific management strategies for sustainable soil health improvement. 
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Contribution of this paper to the literature 
This study contributes to the existing literature on the sustainable management of degraded soils. 
The paper's primary contribution is finding that several approaches can be adopted by farmers to 
prevent and manage soil-borne plant diseases. This study documents the importance of 
sustainable management strategies to improve soil health. 

 
1. Introduction 

Soil degradation refers to the decreased ability of the soil to produce crops as a consequence of soil erosion and 
changes to the chemical, biological, physical, and hydrological soil characteristics. It decreases the capacity of land 
to yield a certain benefit when it is used for a given purpose and managed in a particular way [1, 2]. Land degradation 
is also defined as the decline of all resources linked to agricultural production, such as landforms, soil, vegetation, 
water resources, and climate [3, 4]. Land degradation is mainly caused by human activities such as over-cultivation, 
deforestation, mining, and construction, or by natural phenomena like wind, earthquakes, and volcanic eruptions [5-
7]. Three broad categories of land degradation exist: natural, human-induced, and desertification [4]. The most 
severe type of land deterioration, known as desertification, affects 40% of the earth's surface in dryland areas. 

The most recent UN Global Land Outlook study states that over 40% of the planet's land area is degraded 
(Figure 1), with 965 million hectares worldwide affected by human-induced degradation [8]. Human-induced land 
degradation predominantly impacts countries in Africa and Asia (Table 1). This is mainly due to climate change and 
socio-economic constraints. In Africa, these countries include Ghana, Congo, Equatorial Guinea, Angola, and 
Zambia; in Asia, reports have indicated that countries like Malaysia, Bhutan, the Republic of Korea, Thailand, and 

Laos are affected [9]. Approximately 55% of the world's drylands are found in Asia and Africa. Furthermore, Prăvălie 
[5] reports that Pakistan and Afghanistan are at risk of desertification. According to Lal [10], biodiversity, 
agricultural productivity, and ecosystems are all seriously threatened by land degradation. Land degradation is 
associated with on-site and off-site adverse effects. Crop and animal output declines are evidence of off-site impacts, 
while siltation of riverbeds and reservoirs, reduced water quality, and sand deposition from wind erosion are 
examples of on-site effects [3, 11]. 

The rate at which soil degradation occurs varies and is determined by anthropogenic factors such as cropping 
systems, management techniques, and soil features, including vegetation and climate. There are several kinds of soil 
deterioration, each with unique characteristics and effects [12-14]. Soil erosion is an example of a process that lowers 
the fertility and structure of the soil. It occurs when water or wind eliminates the topsoil layer [15]. According to 
Curtis et al. [16], deforestation, or the removal of forests for urbanization or agriculture, results in interference with 
carbon cycles and biodiversity loss. Another form is salinization, which is caused by soluble salt accumulation in the 
soil that makes it unfit for growing crops [17]. Loss of organic matter, lowered soil fertility, salinization, increased 
buildup of heavy and toxic metals, and soil loss are all signs of degraded soil [4].  

Soil degradation is classified into three forms: physical, chemical and biological degradation (Table 2). In 
comparison to other forms of soil degradation, biological degradation is often overlooked despite its potential 
contribution to soil health and productivity [18-20]. Biological soil degradation is an important aspect because it is 
responsible for the nitrogen, carbon, sulfur, and water cycles that are facilitated by soil microbes and faunal 
composition through the interaction with chemical and physical properties [21, 22]. Biological soil degradation 
encompasses some processes that negatively affect the soil fauna or flora in the soil [19]. 

 
Table 1. Types of soil degradation. 

Type Example of a process Reference (s)  

Physical Soil erosion by wind and water, soil compaction, waterlogging, sealing 
and urbanization, crusting, and desertification. 

Osman [23]; Lal [10], and 

Dragović and Vulević [24] 

Chemical Salinization, excess leaching, nutrient depletion and accumulation of 
toxic chemicals, acidification, loss of organic matter and/or nutrients. 

Dragović and Vulević [24]; 
Eswaran et al. [9], and Osman 
[25] 
 

Biological Loss of soil biodiversity, reduced soil organic matter. Lehman, et al. [19] and Mishra 
and Dhar [26] 

 

2. Methodology  
This review employed the Preferred Reporting Items for Systematic Study and Meta-Analysis (PRISMA) 

technique, which was previously used by researchers [27, 28]. Various databases were utilized as information 
sources, including Google Scholar, which was the major database used for obtaining initial article samples. Scopus, 
PubMed, and Worldwide Science were the other sources considered. A variety of broad search terms, including soil 
degradation, soil-borne pathogens, illness incidence, severity, microbial community, soil amendment, and climate 
change, were used to build a collection of primarily peer-reviewed research articles. The search spanned the database 
until 2024 and included journal articles, review articles, and research reports written in English. 

The articles were assessed based on two criteria: firstly, their appropriateness and relevance to the purpose of 
this study; secondly, their credibility as peer-reviewed publications. Articles were considered after reviewing 
abstracts and findings that included variables based on search titles, as well as appropriate experimental design and 
statistical analysis. Additionally, information from other relevant journals and sources containing research articles 
matching the scope of this literature review was also incorporated [29] (Figure 1). 
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Figure 1. A systematic review based on the PRISMA approach, modified by O'Dea et al. [27]. 

 

3. Findings of the Review 
3.1. Soil-Borne Plant Diseases  

The kind of plant diseases that are induced by pathogens that are soil inhabitants and primarily affect the plant's 
roots, stems, and other underground parts, eventually can kill the entire plant [30-32]. The yield loss between 50-
75% has been reported to be associated with soil-borne plant diseases. Common microbial species responsible for 
soil-borne plant diseases include Phytophthora spp, Verticillium spp, Rhizoctonia spp, Pythium spp, Fusarium spp, 
Phytophthora spp, and Verticillium spp. They affect major groups of food crops such as maize, wheat, cotton, vegetables, 
and fruit crops [33-35]. Table 2 shows some examples of plant diseases caused by soil-borne pathogens. 
 
Table 2. Example of soil-borne plant diseases. 

Disease  Pathogen Symptoms   Reference 

Fusarium wilt in 
tomatoes 

Fusarium oxysporum 
f.sp. lycopersici 

Wilting, yellowing, and browning of leaves, leading 
to plant death. 

Devi, et al. [36] 

Rhizoctonia root rot 
in potatoes 

Rhizoctonia solani Reduced emergence, stunted growth, and dark lesions 
on the stems and tubers. 

Heflish [37] 

Phytophthora root 
rot in avocados 

Phytophthora 
cinnamomi 

Wilting, yellowing, and dieback of the leaves lead to 
tree decline and death. 

Bekker [38] 

Clubroot in Brassica 
crops 

Plasmodiophora 
brassicae 

Large, club-shaped galls on the roots can disrupt 
nutrient and water uptake, stunt growth, and reduce 
yields. 

Saharan, et al. [39] 

 

Since many diseases seem to share identical symptoms, it can be difficult to accurately diagnose one from the 
other. These include, but are not restricted to, twig or branch dieback, bark cracking, wilting, yellowing, root 
blackening, stunting, seedling damping-off, and root rot [40]. All of these factors make the disease more difficult to 
control. Long-term survival of these infections is frequently observed in host plant detritus, soil organic matter, free-
living organisms, or resistant structures such as chlamydospores, oospores, microsclerotia, or sclerotia [41, 42]. 

These diseases are regarded as an important factor that limits crop yield. They are primarily caused by fungi, 
viruses, and bacteria and persist in the soil, often leading to significant agricultural losses and ecological imbalance. 
Common examples include Fusarium wilt, caused by the Fusarium species, bacterial wilt caused by Ralstonia 
solanacearum, and root rot, linked to Phytophthora spp [43]. Soil health is a principal factor that affects the management 
of soil-borne diseases. Through normal biological processes, healthy soils that are high in organic matter and 
beneficial microbes can inhibit threatening diseases [44, 45]. But soil becomes more vulnerable when it is weakened 
by unsuitable management techniques or changes in the environmental conditions [19, 46]. The spread of diseases 
transmitted by soil is influenced by several factors (Figure 2). The factors can alter the soil environment, making it 
more conducive to pathogen survival and proliferation [47]. The knowledge of these dynamics is crucial for 
formulating effective management strategies to mitigate the impact of soil-borne diseases on agriculture and 
ecosystems. 

 

 
Figure 2. Factors influencing the spread of plant soil-borne diseases. 

 
 

When biological degradation occurs, it leads to a reduction of soil vegetation cover, decreased vegetation 
diversity, altered biomass of microbial communities, a change in species and biodiversity composition, loss of soil 
flora, loss of soil macro and microorganisms and increased pests and diseases [45, 48, 49]. According to Teixeira et 
al. [50], poor soil structure, low organic matter, low soil fertility, high soil compaction, and insufficient drainage are 
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all contributing factors to the effects of soil degradation. For example, Fusarium root rot development can be 
triggered by the environmental conditions of the soil. 

Furthermore, plant soil-borne pathogens, which form part of the soil fauna, are thought to be affected by soil 
degradation [51]. Additionally, Patel et al. [52] indicated that when soil conditions are not favorable, soil-borne 
pathogens become more damaging. Examples of plant-borne pathogens that have been reported to be impacted by 
soil degradation include Rhizoctonia solani, whose build-up increases in reduced tillage fields, with unmulched fields 
having lower pathogen populations and severity of the disease. 

 

4. Effects of Soil Degradation on Soil-Borne Plant Diseases 
4.1. Salinization  

Soils that exhibit an electrical conductivity of greater than 4 dS m−1 or less than 40 mM NaCl at 25 °C for the 
saturation extract are classified as saline. According to estimates, about 20% of land suitable for agriculture is affected 
by salinity, and it is projected that by 2050, that percentage could reach up to 50% [53]. Several physiological 
processes (such as respiration, photosynthesis, DNA replication, nutrient and water absorption, respiration, and 
protein metabolism) are inhibited by high salinity in salt-sensitive plant species and certain salt-tolerant or halophyte 
species (Table 3) [54, 55]. High salinity inhibits many physiological processes in salt-sensitive plant species as well 
as some halophytes or salt-tolerant species, including respiration, photosynthesis, DNA replication, water and 
nutrient absorption, and protein metabolism [54-56]. 

In highly saline soils, plants are more vulnerable to infection by soil-borne diseases, according to several studies 
[42, 57, 58]. Certain soil-borne diseases have been found to develop more readily in soil with higher salinities. For 
instance, a study by Hellman et al. [59] examined by measuring inoculum density, the development of Fusarium 
oxysporum f. sp. lycopersici was positively influenced by increased salts from irrigation water and soil. Furthermore, 
salinity stress makes plants more vulnerable to a range of pathogens, which exacerbates plant diseases by raising the 
prevalence of disease. 
 
Table 3. Effects of salinization on plants. 

Effect Reference (s) 

Water and nutrient absorption Hussain, et al. [54] and Otlewska, et al. [55] 

DNA replication Otlewska, et al. [55] and Mazhar, et al. [56] 

Reduced photosynthetic rate Otlewska, et al. [55] and Hussain, et al. [54] 

Inhibition of respiration Jacoby, et al. [57] 

Inhibition of protein metabolism Bandehagh and Taylor [58] 

 

 
Under extremely hot conditions, higher salinity affects several processes associated with pathogen growth and 

development. These include chlamydospore generation, pathogen sporulation in plant vessels, and general fungal 
development [60]. In Africa, Ethiopia is reported to have the largest salt-affected landmass (11 hectares), making it 
the seventh in the world (Figure 3). 

 

 
Figure 3. Part of the highly salt-affected area in Ethiopia.  

                                          Source: Qureshi, et al. [61]. 
 

According to the findings of an experiment by Haller et al. [62], which examined the impact of elevated salts on 
the immune system of Arabidopsis thaliana, plants became more susceptible to necrotrophic Botrytis cinerea, 
necrotrophic Alternaria brassicicola, and hemibiotrophic Pseudomonas syringae when the ordinary responses to salt 
stress are triggered by acting as a regulatory function. The hormonal imbalance resulting from higher salt levels 
was the cause of enhanced vulnerability of A. thaliana [63]. 

The effect on morpho-physiological and yield attributes resulting from increased severity of Fusarium wilt was 
recorded from a greenhouse study to assess the combined effect of salinity and Fusarium oxysporum f.sp. cepa. The 
effects recorded included a decline in the membrane stability index, total protein content of the leaf, general osmotic 
potential, and total chlorophyll in onion plants [64-66]. In another in-vitro and pot experiment by Tiwari et al. [67], 
it was revealed that a significant increase in Fusarium wilt disease severity was caused by the rise in salt 
concentration. But also, Mansha et al. [64] reported that salinity is an important factor that contributes to increased 
incidence severity for soil-borne diseases. 
 

4.2. Moisture Availability  
Soil degradation results in changes in the moisture levels, and it can be aggravated by floods and the 

desertification process [2]. Soil moisture plays a potential role in the development of soil-borne pathogens. A study 



World Scientific Research, 2026, 13(1): 7-20 

11 
© 2026 by the authors; licensee Asian Online Journal Publishing Group 

 

 

by Narisawa et al. [68] revealed that disease occurrence significantly increases with the rise in the soil moisture 
level. For example, the disease occurrence at a 40% moisture level is independent of the spore density. An increase 
in soil moisture significantly increases the level of pathogen colonization in the seedlings, as high moisture promotes 
spore germination, dispersal and infection [49]. The strong correlation between the increase in humidity and the 
severity of soil-borne plant diseases was confirmed in a study involving Pseudomonas syringae and M. oryzae 
pathogens in the plant phyllosphere. 

The soil moisture level affects soil-borne pathogens in several ways such as pathogen survival and growth in the 
soil [68-70]. Other pathogenic soil-borne microbe groupings, like R. solanacearum, have also shown a correlation 
between moisture levels and the severity of soil-borne diseases [70, 71]. Moisture has been used as the most 
significant factor in predicting disease occurrence across various regions. Oomycetes and root-infecting fungi are 
reported as the major groups of plant pathogenic fungi present at various soil moisture levels [72]. High moisture 
level in the soil facilitates pathogenic plant zoospores' movement to the plant roots [73]. 

According to Berendsen et al. [74], during high pathogen abundance, the plant response is determined by the 
ability of the plant to survive stress conditions and the kind of microbes colonizing the roots. However, some species 
of microbes found in the rhizosphere play a potential role in improving the resistance of plants to pathogens. Also, 
the amount and composition of the rhizosphere microbiome influence pathogenic microorganisms to colonize the 
plant roots [71, 75]. Table 4 shows soil-borne disease severity as influenced by the level of moisture conditions in 
the soil.  
 
Table 4. Severity of soil-borne diseases as influenced by different soil moisture conditions. 

Pathogen  Host  Soil moisture 
condition  

Severity of the 
diseases  

Reference 

Fusarium spp. Cereals  Dry soil  More severe  Hollaway, et al. [76] and Saad, 
et al. [77] 

Streptomyces scabies Potato  Dry soil  More severe  Nisa, et al. [78] and 
Mushinskiy, et al. [79] 

Macrophomina phaseoli Sorghum  Low soil moisture  Most severe  Pandey and Basandrai [80] 

Gaeumannomyces graminis Cereals  Low moisture  Most severe  Saad, et al. [81] and Aranda, et 
al. [82] 

 

4.3. Soil Organic Matter  
Soil erosion is one of the main causes of the loss of soil organic matter [83]. In comparison to other kinds of 

organic matter like crop residue, compost can inhibit soil-borne illnesses by 50%, according to a laboratory-scale 
experiment conducted by Neher et al. [84]. They estimated that 15 tonnes per hectare is the ideal rate of compost 
usage for controlling soil-borne diseases. However, it has been pointed out that several factors, including soil type, 
pH, texture, and organic matter type, influence how well compost inhibits soil-borne pathogens [85-88].  

Santos et al. [89] added that an aggressive soil-borne pathogen (Rhizoctonia solani) infects crops from 
Solanaceae, Fabaceae, Asteraceae, and Brassicaceae and causes potential yield losses. For instance, R. solani was able 
to cause up to fifty percent yield loss in lettuce cultivated in the US. R. amending the soil with composts prepared 
from lignocellulosic substrates, such as tree barks, has been reported as an effective approach to control this pathogen. 

The depletion of resources such as organic materials by the indigenous microbial communities has been reported 
as one of the mechanisms used to suppress the growth and infection induced by soil plant pathogens [17, 90]. For 
instance, Streptomycetes spp. tend to utilize wild rocket or rice bran debris, which helps to suppress pathogens such 
as Fusarium oxysporum and potato scab diseases [91-93]. 

Many soil-borne plant diseases, including Sclerotinia drop (Sclerotinia sclerotiorum) of lettuce, Fusarium wilt 
(F. oxysporum f. sp. cucumerinum) of cucumbers, and Rhizoctonia root rot (Rhizoctonia solani) on beans and cotton, 
can be suppressed by adding compost to the growing medium. Compost is essential for the biocontrol of soil-
transmitted plant diseases [69, 86]. 
 

4.4. Elevated Temperature  
The activities of soil microorganisms are highly dependent on soil temperature [94]. This finding aligns with 

the study by Yan and Nelson Jr [95], which found that a significant reduction in seedling emergence occurred at a 
soil temperature of 10°C associated with Fusarium solani and F. trincticum, whereas infection was achieved at 
temperatures between 10°C and 20°C. Soil temperature is negatively correlated with soil moisture; this is confirmed 
by the results of Yan and Nelson Jr [95], who observed that high incidences of soil-borne diseases are recorded 
during lower temperatures because low moisture favors the growth and development of soil-borne pathogens. At 
18°C and 28°C, the majority of infections were observed at soil moisture levels of 20% to 80% WHC and 40% to 80% 
WHC, respectively. It was shown that F. solani disease thrived at 18°C with high soil moisture (60% to 80% WHC) 
or at 28°C with low soil moisture (20% to 40% WHC). In contrast, F. trincticum disease was more likely to occur in 
colder temperatures and lower soil moisture levels. 

It was found that soil temperature had a substantial impact on the severity of Fusarium root rot (P < 0.05). From 
10 to 20 degrees, there was an increase in the length of lesions and the incidence of diseases caused by F. solani and 
F. tricinctum. In the 10 to 20°C temperature range, F. solani not only produced more severe illness than F. 
tricinctum, but it also created the longest lesions and had the highest disease prevalence. F. tricinctum did not develop 
diseases in seedlings that survived pre-emergence damping-off at 10°C. Temperature-dependent lesion length and 
disease incidence for F. solani increased from 10 to 20°C, but F. tricinctum-induced lesion length and disease 
prevalence reduced as temperatures increased from 15 to 20°C [95, 96]. 

According to Delgado-Baquerizo et al. [97], temperature has a positive correlation with the relative abundance 
of prevalent plant pathogens, and Spearman correlations exist between variables in the environment and the relative 
abundance of prevalent fungal plant pathogens at the genus level (n=235). According to a US experiment aimed at 
determining the impact of soil temperature on Helminthosporium sativum infection of barley and wheat, at a 
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temperature below 16°C, barley was more freely attacked than wheat. In contrast, the most susceptible barley variety 
was attacked [98]. 
 

4.5. Altered Soil Structure  
Since soil structure defines how soil particles are arranged into aggregates, any change in this structure induced 

by soil erosion or soil compaction leads to reduced soil porosity and aeration [99]. When soil porosity is reduced, it 
limits soil aeration and water infiltration, which in turn favors anaerobic pathogens. Fusarium wilts caused by 
Fusarium species are a good example of a disease that is highly severe in poorly aerated soil [100].  
 

4.5.1. Soil Compaction 
According to Bogunovic et al. [101], soil compaction is caused by agricultural practices such as overgrazing and 

the use of large machinery for growing crops and management, which reduce the size of the soil pores. Compacted 
soil decreases the flow of water and air, leading to anaerobic conditions that are favorable for facultative and anaerobic 
soil-borne diseases like Fusarium [102-105]. Additionally, inadequate root penetration in compacted soils exposes 
plants to soil-borne diseases [106]. 

In the compacted and overgrazed soils, nematode infestations (Meloidogyne spp.) are reported to be higher. This 
is attributable to soil compaction, which leads to a reduced number of beneficial nematodes while leaving the harmful 
nematodes unaffected [107, 108]. 
 

4.5.2. Soil Erosion 
When the soil is eroded by agents of erosion such as wind and water, it carries away the topsoil, a layer that is 

mostly enriched with organic matter, leaving the porous subsoil with poor water retention, thus favoring pathogen 
survival and spread [6, 109]. For instance, the disease caused by Phytophthora species has been reported to be more 
severe in eroded soils due to waterlogging conditions. Another example is bacterial wilt, which has been reported to 
increase dramatically in areas where soil erosion and degraded soils predominate. In Southwest Asia, there is a high 
vulnerability of crops to bacteria because of the extensive deforestation that has been done for establishing palm oil 
plantations [110-113]. 
 

4.5.3. Reduced Organic Matter 
Due to its ability to bond to the soil, organic matter in the soil is essential to maintaining proper soil structure 

[114]. Degraded soils often have lower levels of organic matter, thus rendering poor soil structure. Poor soil 
structure leads to increased susceptibility to erosion and compaction. This, in turn, creates favourable conditions for 
pathogens like Fusarium, which thrive in poorly structured soils [115-119]. 
 

4.5.4. Waterlogging and Poor Drainage 
Altered soil structure often leads to poor drainage, resulting in waterlogged conditions. Waterlogged soils create 

an anaerobic environment that can promote the growth of pathogens like Phytophthora and Pythium. These 
pathogens thrive in saturated soils and can cause severe root diseases [120-122]. 
 

4.5.5. Crusting 
In some soils, degradation may be accompanied by soil crusting. The crust formed significantly reduces the water 

infiltration and aeration. In such conditions, there will be poor seedling emergence and root development, which will 
render the young plants susceptible to the damping-off caused by Pythium species [123-125]. 

 

4.5.6. Loss of Soil Aggregates 
Healthy soils have aggregates formed by the binding of soil particles with organic matter and microbial exudates. 

These aggregates create a stable soil structure with ample pore spaces. Land degradation, particularly through 
intensive farming and chemical use, can break down these aggregates, leading to a more homogenous and compact 
soil matrix. This breakdown not only reduces the soil's resilience to erosion but also diminishes its ability to support 
a diverse microbial community that can suppress pathogens [123, 125-127]. 
 

4.5.7. Reduced Water Infiltration and Retention 
Poor soil structure restricts water infiltration and aeration capacity, thus causing waterlogged conditions. Under 

waterlogging conditions, soil-borne pathogens such as Phytophthora [128]. On the other hand, Shahi et al. [129] 
when dry conditions prevail in the soil, plants become more susceptible to Fusarium wilt. Poor water management 
in degraded soils can thus create fluctuating moisture conditions that favor different pathogens at different times, 
challenging disease control efforts [130]. 
 

4.6. Nutrition Imbalance 
Practices such as overuse of chemicals, deforestation, and over-farming compromise soil health, consequently 

leading to an increase in the susceptibility of the plants to diseases [131, 132]. A balanced level of nutrients is 
required for proper plant health and resistance to diseases. In most degraded soils, plant nutrients are deficient, which 
weakens the plant and renders it susceptible to infection by soil-borne pathogens such as Fusarium spp [133, 134]. 

Among other factors, the richness of microbes in the soil is dependent on nutrient availability as the principal 
factor; therefore, when the soil is deficient in some nutrients, especially the macronutrients, it negatively affects the 
richness of microbes in terms of number and species of beneficial microorganisms that can fight and suppress the 
pathogenic microbes [135]. 

However, nutrient imbalances, such as excessive nitrogen from over-fertilization, can disrupt this microbial 
balance. On the other hand, high nitrogen levels can promote the growth of pathogenic fungi like Pythium, while 
reducing the populations of beneficial microbes that help control these pathogens [136, 137].  
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Some cases of soil-borne pathogens that can survive in nutrient-rich soils have been reported. A good example 
is (Meloidogyne spp.), which causes significant damage to plant roots and can thrive well in nutrient-imbalanced 
soils, such as in soils with high levels of phosphorus [138]. Similarly, Verticillium dahliae and V. albo-atrum, which 
cause verticillium wilt in tomato and potato fields, become more prevalent in soils with an excess amount of 
potassium, thus increasing the severity of the diseases. These imbalances create an environment conducive to 
pathogen survival and spread [139, 140]. 

 

4.7. Microclimate Changes 
The microclimate refers to the climatic conditions in a small, specific area that can differ significantly from the 

general climate of the region [141]. 
Studies have shown that the microclimate of an area can be affected due to land degradation, which in turn can 

increase the severity of soil-borne disease [142]. The loss of vegetation cover and soil organic matter, which 
consequently leads to elevated soil temperature is aggravated by soil degradation [143, 144].  

This is because vegetation helps to moderate temperatures by providing shade and retaining moisture. When 
this cover is disrupted, soils can become much hotter during the day and significantly cooler at night. A good example 
is Rhizoctonia solani, which causes root rot and becomes more severe in heat-stressed plants vulnerable to pathogens 
[145, 146]. 

Similarly, land degradation may lead to poor soil drainage, which directly affects the humidity levels in the soils, 
which may become lower during dry seasons and higher during the wet seasons. These fluctuating humidity levels 
can create favourable conditions for various pathogens. High humidity levels can promote the growth of fungal 
pathogens like Phytophthora, which thrive in moist environments, while low humidity can stress plants and make 
them more susceptible to root diseases [12, 13, 147]. The removal of vegetation through deforestation or 
overgrazing can alter wind patterns at the micro level. With fewer barriers to block and slow down the wind, 
degraded lands can experience stronger winds. These winds can dry out the soil, disperse soil particles, and transport 
soil-borne pathogens to new areas. For instance, the dispersal of nematode cysts by wind can lead to the spread of 
nematode infestations in previously unaffected areas [15, 16]. 

Moreover, the loss of vegetation cover, which exposes the soil to increased soil radiation, is a characteristic of 
degraded soils. This may result in hotter soil temperatures and greater rates of evaporation, which would further 
reduce soil moisture content. But also, it was claimed by Qadir et al. [148] high levels of solar radiation can also 
damage plant tissues, making them more susceptible to pathogens. For example, sunscald on the stems and fruits of 
plants can create entry points for pathogens like Botrytis cinerea, which causes grey mould. Table 5 presents 
examples of soil-borne plant diseases that develop following micro-climate changes in degraded soils. 
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Table 5. Examples of soil-borne plant diseases developing due to a change in microclimate in degraded soils. 

Disease  Pathogen  Crops affected  The microclimate element 
affected  

Causes  The region affected in the 
world  

Reference 

Verticillium 
wilt  

Verticillium 
dahliae 

Tomatoes and 
eggplants. 

Increased temperature fluctuations 
and lower humidity levels. 

Removal of olive groves for 
urban development 

Mediterranean region  Gitari, et al. [18] 

Powdery 
mildew  

Erysiphe spp. Wheat and 
barley 

High humidity and moderate 
temperatures 

Removal of olive groves for 
urban development contributed 
to these microclimate changes. 

Midwest United States Lehman, et al. [19] 

Fusarium 
Head Blight 

Fusarium 
graminearum 

Wheat  Increased temperature extremes 
and reduced humidity. 

Deforestation and intensive 
farming  

In the parts of Canada Bastida, et al. [20] 

Late Blight Phytophthora 
infestans 

Tomatoes  Cool and moist conditions The removal of vegetation for 
agriculture 

In the highlands of East 
Africa 

Menta [21] 

Southern 
Blight 

Sclerotium 
rolfsii 

Peanuts, beans, 
and tomatoes 

Higher soil temperatures and 
reduced organic matter 

The loss of vegetation and 
organic matter 

Southern United States, 
southern blight has become 
more prevalent. 

Usharani, et al. [22]; 

Garcia Gonzalez [125]; Le 
Bissonnais [126] and Xie, 
et al. [127] 
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5. Strategies for the Management of Soil-Borne Plant Diseases Under Degraded Soils  
Because soil-borne plant diseases significantly limit crop production, especially in degraded soils where nutrient 

depletion and structural deterioration exacerbate their impact, it is critical for farmers to adopt management practices 
that effectively manage the diseases, restore soil health, and ensure sustainable crop production [149]. These 
remedies take a multimodal approach, incorporating biological, cultural, and chemical methods to attenuate disease 
severity and improve plant resistance [150] (Table 6).  
 
Table 6. Strategies for the management of soil-borne plant diseases under degraded soils. 

Diseases management 
strategy 

Description Example of disease-
managed 

Reference (s) 

Soil amendment Addition of SOM to 
improve soil health and 
suppress plant soil-borne 
pathogens. 

Reduction of Fusarium wilt 
incidence in tomato fields 

De Corato [151] and Bonilla, et al. 
[152] 

Crop rotation and 
diversification  

To disrupt the life cycles 
of soil-borne pathogens  

Management of damping-off 
disease caused by Rhizoctonia 
solani in solanaceous crops 

Akber, et al. [153]; Narayanasamy 
[154] and Dutta [155] 
 

Use of resistant crop 
varieties  

To reduce disease 
severity and improve 
yield 

Management of Verticillium 
wilt disease caused by 
Verticillium dahliae in potato. 

Pasche, et al. [156]; Munyaneza and 
Bizimungu [157] and Sowik, et al. 
[158] 
 

Use of antagonistic 
microorganisms 
(Biological control)   

To suppress pathogenic 
soil microorganisms  

Use of Trichoderma spp. to 
effectively control Fusarium 
and Rhizoctonia in crops 

Boro, et al. [159]; Ali and Nadarajah 
[160]; Suprapta [161]; Verma, et al. 
[162] and Adnan, et al. [163] 
 

Soil solarization  Helps to concentrate 
solar radiation, which 
raises the temperature to 
kill the pathogenic 
microorganisms. 

Management of Pythium and 
Phytophthora spp. responsible 
for causing root rot diseases 

Elshahawy and Saied [164]; 
Bennett, et al. [165] and Sharma, et 
al. [166]  
 

Anaerobic Soil 
Disinfection (ASD) 

It involves saturating the 
soil with water and 
covering it to create 
anaerobic conditions that 
kill the soil-borne 
pathogens. 

Significant reduction in 
disease incidence in crops 
such as strawberries and 
tomatoes caused by Phythium 
spp and Fusarium spp. 

Priyashantha and Attanayake [167]; 
Hamal [168] and Khadka [169]  
 

Biofumigation This technique involves 
incorporating specific 
plant species, such as 
Brassica crops, into the 
soil to suppress 
pathogens. The crop 
species release bioactive 
compounds that inhibit 
the growth of pathogens. 

Significant reduction of 
Fusarium wilt incidence in 
the tomato field after 
incorporation of cover crops, 
leading to healthier growth 
and higher yields 

Thru Ppoyil [170] and Awrey 
[171] 
 

Integrated Disease 
Management (IDM) 

A combination of 
biological methods of 
control, the use of 
resistant varieties, and 
cultural methods such as 
crop rotation. 

Management of Fusarium 
wilt caused by growing 
Fusarium oxysporum f.sp. 
lycopersici-resistant tomato 
varieties, rotation of tomato 
with common beans, addition 
of organic manure, and field 
sanitation. 

Manici, et al. [136]; Katan [31]; 
Patil, et al. [172] and Baysal-Gurel, 
et al. [173] 
 

 

 

6. Future Directives for the Management of Soil-Borne Diseases in Degraded Soils  
The use of sustainable agriculture methods to improve soil health and microbial diversity is essential. 

Biofumigation is a potential technology that involves introducing Brassica family plants into the soil. These plants 
synthesize glucosinolates, which degrade into beneficial substances that protect against diseases, including Fusarium 
and Rhizoctonia. Recent research shows that biofumigation considerably reduces disease incidence in crops such as 
tomatoes and strawberries, resulting in higher yields and plant health [174-176].  

Vida et al. [177] demonstrated that using organic amendments like compost improves soil microbial diversity, 
which is critical for disease suppression. For example, compost application has effectively reduced Verticillium dahliae 
populations in strawberry fields, resulting in healthier plants and greater fruit quality. 

Anaerobic Soil Disinfestation (ASD) is an effective option for controlling soil-borne diseases without the use of 
chemicals. ASD involves saturating the soil and covering it to create anaerobic conditions, which significantly reduce 
hazardous pathogen populations [168, 178]. For example, ASD has been shown to effectively manage Fusarium and 
Pythium in a variety of crops, resulting in healthier plants and higher yields. Furthermore, coupling ASD with 
organic amendments improves its efficacy since organic matter provides a carbon source for beneficial microbial 
communities during the anaerobic phase [179, 180]. According to Gioia et al. [181], an integrated approach not 
only helps manage current diseases but also enhances the long-term resilience of degraded soils, making them more 
than capable of enduring future pathogen pressures and enhancing overall soil health.  
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7. Conclusion 
The degraded soils are characterized by conditions that may influence the growth, movement, and survival of 

pathogens that cause important soil-borne diseases in crops, thus increasing pathogen virulence, disease, and severity. 
Additionally, in degraded soil, there is a loss of beneficial microbes, such as antagonists that inhibit the growth of 
plant pathogens. Furthermore, plants in degraded soil are weakened by unfavorable factors, including low soil 
nutrients, moisture, temperature, and pH, thus rendering them vulnerable to infections by pathogens. On the other 
hand, plant pathogens have a greater capability to survive extreme conditions or may undergo some modification to 
survive in degraded soils better than beneficial microbes, thus they can infect in such situations. Since managing 
severe soil-borne diseases is much trickier, a sustainable disease management approach would be the best option. 
Sustainable techniques such as minimum tillage, zero tillage, conservation agriculture, proper fertilization, proper 
grazing, agroforestry, avoiding the use of heavy equipment, use of salt-free water for irrigating crops, water for 
irrigation, afforestation, re-afforestation, and other activities that reduce the occurrence of climate change need to be 
adopted to curb the impacts of soil degradation. 
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