



## Impacts of soil degradation on the severity of soil-borne diseases and sustainable management strategies: A review

Victor Vedasto Ngaiza<sup>1</sup>   
Emmanuel Zepheline Nungula<sup>2</sup>   
Luciana Raphael Chappa<sup>3</sup>   
Sagar Maitra<sup>4</sup>   
Harun Ireri Gitari<sup>5</sup>



(✉ Corresponding Author)

<sup>1</sup>School of Life Sciences and Bio-engineering, the Nelson Mandela African Institution of Sciences and Technology, Arusha, Tanzania.

<sup>1</sup>Email: [victor.ngaiza@nm-aist.ac.tz](mailto:victor.ngaiza@nm-aist.ac.tz)

<sup>2</sup>Department of Environment and Sustainable Development, Mzumbe University, Morogoro, Tanzania.

<sup>2</sup>Email: [enzephania@mzumbe.ac.tz](mailto:enzephania@mzumbe.ac.tz)

<sup>3</sup>Swedish University of Agricultural Sciences, Uppsala, Sweden.

<sup>3</sup>Email: [lucianachappa@gmail.com](mailto:lucianachappa@gmail.com)

<sup>4</sup>Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha-761211, India.

<sup>4</sup>Email: [sagar.maitra@cutm.ac.in](mailto:sagar.maitra@cutm.ac.in)

<sup>5</sup>Department of Agricultural Sciences and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, Nairobi, Kenya.

<sup>5</sup>Email: [harun.gitari@ku.ac.ke](mailto:harun.gitari@ku.ac.ke)

### Abstract

Land degradation is a significant environmental challenge that impacts over 1.5 billion people globally. Recent assessments indicate that approximately 23% of the Earth's surface is degraded, with alarming projections suggesting this could increase by up to 50% by 2050. Regions particularly vulnerable to severe degradation include Sub-Saharan Africa and South Asia, largely due to socio-economic and climatic changes. Soil degradation is classified into three main forms: physical, chemical, and biological. These forms often interact and influence one another in various ways. Notably, biological degradation is frequently overlooked, despite the critical role of soil biology in maintaining healthy ecosystems. Soil microorganisms are essential for facilitating vital nutrient cycles, including nitrogen, carbon, sulfur, and water, and they also play a crucial antagonistic role against soil-borne plant pathogens. The virulence, growth, motility, and survival of these pathogens are significantly affected by soil degradation, thereby impacting the prevalence and severity of soil-borne diseases. This paper provides insights into soil degradation, focusing mainly on biological degradation and the processes and human activities that contribute to it. It discusses the impacts of biological degradation and other forms on soil-borne diseases and explores their interactions, while also outlining specific management strategies for sustainable soil health improvement.

**Keywords:** Salinisation, Soil biodiversity, Soil moisture, Soil organic matter, Soil temperature, Soil-borne plant pathogens.

**Citation** | Ngaiza, V. V., Nungula, E. Z., Chappa, L. R., Maitra, S., & Gitari, H. I. (2026). Impacts of soil degradation on the severity of soil-borne diseases and sustainable management strategies: A review. *World Scientific Research*, 13(1), 7–20. 10.20448/wsr.v13i1.7988

#### History:

Received: 14 October 2025

Revised: 17 November 2025

Accepted: 16 December 2025

Published: 5 January 2026

**Licensed:** This work is licensed under a [Creative Commons Attribution 4.0 License](#)

**Publisher:** Asian Online Journal Publishing Group

**Funding:** This study received no specific financial support.

**Institutional Review Board Statement:** Not applicable.

**Transparency:** The authors confirm that the manuscript is an honest, accurate, and transparent account of the study; that no vital features of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study followed all ethical practices during writing.

**Competing Interests:** The authors declare that they have no competing interests.

**Authors' Contributions:** All authors contributed equally to the conception and design of the study. All authors have read and agreed to the published version of the manuscript.

## Contribution of this paper to the literature

This study contributes to the existing literature on the sustainable management of degraded soils. The paper's primary contribution is finding that several approaches can be adopted by farmers to prevent and manage soil-borne plant diseases. This study documents the importance of sustainable management strategies to improve soil health.

## 1. Introduction

Soil degradation refers to the decreased ability of the soil to produce crops as a consequence of soil erosion and changes to the chemical, biological, physical, and hydrological soil characteristics. It decreases the capacity of land to yield a certain benefit when it is used for a given purpose and managed in a particular way [1, 2]. Land degradation is also defined as the decline of all resources linked to agricultural production, such as landforms, soil, vegetation, water resources, and climate [3, 4]. Land degradation is mainly caused by human activities such as over-cultivation, deforestation, mining, and construction, or by natural phenomena like wind, earthquakes, and volcanic eruptions [5-7]. Three broad categories of land degradation exist: natural, human-induced, and desertification [4]. The most severe type of land deterioration, known as desertification, affects 40% of the earth's surface in dryland areas.

The most recent UN Global Land Outlook study states that over 40% of the planet's land area is degraded (Figure 1), with 965 million hectares worldwide affected by human-induced degradation [8]. Human-induced land degradation predominantly impacts countries in Africa and Asia (Table 1). This is mainly due to climate change and socio-economic constraints. In Africa, these countries include Ghana, Congo, Equatorial Guinea, Angola, and Zambia; in Asia, reports have indicated that countries like Malaysia, Bhutan, the Republic of Korea, Thailand, and Laos are affected [9]. Approximately 55% of the world's drylands are found in Asia and Africa. Furthermore, Prăvălie [5] reports that Pakistan and Afghanistan are at risk of desertification. According to Lal [10], biodiversity, agricultural productivity, and ecosystems are all seriously threatened by land degradation. Land degradation is associated with on-site and off-site adverse effects. Crop and animal output declines are evidence of off-site impacts, while siltation of riverbeds and reservoirs, reduced water quality, and sand deposition from wind erosion are examples of on-site effects [3, 11].

The rate at which soil degradation occurs varies and is determined by anthropogenic factors such as cropping systems, management techniques, and soil features, including vegetation and climate. There are several kinds of soil deterioration, each with unique characteristics and effects [12-14]. Soil erosion is an example of a process that lowers the fertility and structure of the soil. It occurs when water or wind eliminates the topsoil layer [15]. According to Curtis et al. [16], deforestation, or the removal of forests for urbanization or agriculture, results in interference with carbon cycles and biodiversity loss. Another form is salinization, which is caused by soluble salt accumulation in the soil that makes it unfit for growing crops [17]. Loss of organic matter, lowered soil fertility, salinization, increased buildup of heavy and toxic metals, and soil loss are all signs of degraded soil [4].

Soil degradation is classified into three forms: physical, chemical and biological degradation (Table 2). In comparison to other forms of soil degradation, biological degradation is often overlooked despite its potential contribution to soil health and productivity [18-20]. Biological soil degradation is an important aspect because it is responsible for the nitrogen, carbon, sulfur, and water cycles that are facilitated by soil microbes and faunal composition through the interaction with chemical and physical properties [21, 22]. Biological soil degradation encompasses some processes that negatively affect the soil fauna or flora in the soil [19].

**Table 1. Types of soil degradation.**

| Type       | Example of a process                                                                                                                           | Reference (s)                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Physical   | Soil erosion by wind and water, soil compaction, waterlogging, sealing and urbanization, crusting, and desertification.                        | Osman [23]; Lal [10], and Dragović and Vulević [24]           |
| Chemical   | Salinization, excess leaching, nutrient depletion and accumulation of toxic chemicals, acidification, loss of organic matter and/or nutrients. | Dragović and Vulević [24]; Eswaran et al. [9], and Osman [25] |
| Biological | Loss of soil biodiversity, reduced soil organic matter.                                                                                        | Lehman, et al. [19] and Mishra and Dhar [26]                  |

## 2. Methodology

This review employed the Preferred Reporting Items for Systematic Study and Meta-Analysis (PRISMA) technique, which was previously used by researchers [27, 28]. Various databases were utilized as information sources, including Google Scholar, which was the major database used for obtaining initial article samples. Scopus, PubMed, and Worldwide Science were the other sources considered. A variety of broad search terms, including soil degradation, soil-borne pathogens, illness incidence, severity, microbial community, soil amendment, and climate change, were used to build a collection of primarily peer-reviewed research articles. The search spanned the database until 2024 and included journal articles, review articles, and research reports written in English.

The articles were assessed based on two criteria: firstly, their appropriateness and relevance to the purpose of this study; secondly, their credibility as peer-reviewed publications. Articles were considered after reviewing abstracts and findings that included variables based on search titles, as well as appropriate experimental design and statistical analysis. Additionally, information from other relevant journals and sources containing research articles matching the scope of this literature review was also incorporated [29] (Figure 1).

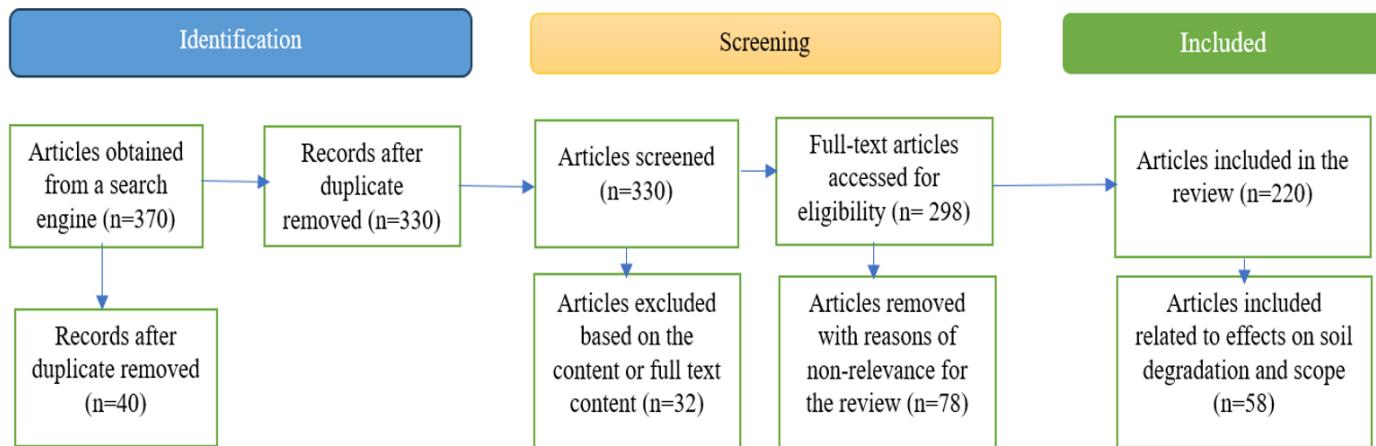



Figure 1. A systematic review based on the PRISMA approach, modified by O'Dea et al. [27].

### 3. Findings of the Review

#### 3.1. Soil-Borne Plant Diseases

The kind of plant diseases that are induced by pathogens that are soil inhabitants and primarily affect the plant's roots, stems, and other underground parts, eventually can kill the entire plant [30-32]. The yield loss between 50-75% has been reported to be associated with soil-borne plant diseases. Common microbial species responsible for soil-borne plant diseases include *Phytophthora spp*, *Verticillium spp*, *Rhizoctonia spp*, *Pythium spp*, *Fusarium spp*, *Phytophthora spp*, and *Verticillium spp*. They affect major groups of food crops such as maize, wheat, cotton, vegetables, and fruit crops [33-35]. Table 2 shows some examples of plant diseases caused by soil-borne pathogens.

Table 2. Example of soil-borne plant diseases.

| Disease                           | Pathogen                                    | Symptoms                                                                                                      | Reference            |
|-----------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|
| Fusarium wilt in tomatoes         | <i>Fusarium oxysporum f.sp. lycopersici</i> | Wilting, yellowing, and browning of leaves, leading to plant death.                                           | Devi, et al. [36]    |
| Rhizoctonia root rot in potatoes  | <i>Rhizoctonia solani</i>                   | Reduced emergence, stunted growth, and dark lesions on the stems and tubers.                                  | Heflish [37]         |
| Phytophthora root rot in avocados | <i>Phytophthora cinnamomi</i>               | Wilting, yellowing, and dieback of the leaves lead to tree decline and death.                                 | Bekker [38]          |
| Clubroot in Brassica crops        | <i>Plasmodiophora brassicae</i>             | Large, club-shaped galls on the roots can disrupt nutrient and water uptake, stunt growth, and reduce yields. | Saharan, et al. [39] |

Since many diseases seem to share identical symptoms, it can be difficult to accurately diagnose one from the other. These include, but are not restricted to, twig or branch dieback, bark cracking, wilting, yellowing, root blackening, stunting, seedling damping-off, and root rot [40]. All of these factors make the disease more difficult to control. Long-term survival of these infections is frequently observed in host plant detritus, soil organic matter, free-living organisms, or resistant structures such as chlamydospores, oospores, microsclerotia, or sclerotia [41, 42].

These diseases are regarded as an important factor that limits crop yield. They are primarily caused by fungi, viruses, and bacteria and persist in the soil, often leading to significant agricultural losses and ecological imbalance. Common examples include Fusarium wilt, caused by the *Fusarium* species, bacterial wilt caused by *Ralstonia solanacearum*, and root rot, linked to *Phytophthora spp* [43]. Soil health is a principal factor that affects the management of soil-borne diseases. Through normal biological processes, healthy soils that are high in organic matter and beneficial microbes can inhibit threatening diseases [44, 45]. But soil becomes more vulnerable when it is weakened by unsuitable management techniques or changes in the environmental conditions [19, 46]. The spread of diseases transmitted by soil is influenced by several factors (Figure 2). The factors can alter the soil environment, making it more conducive to pathogen survival and proliferation [47]. The knowledge of these dynamics is crucial for formulating effective management strategies to mitigate the impact of soil-borne diseases on agriculture and ecosystems.

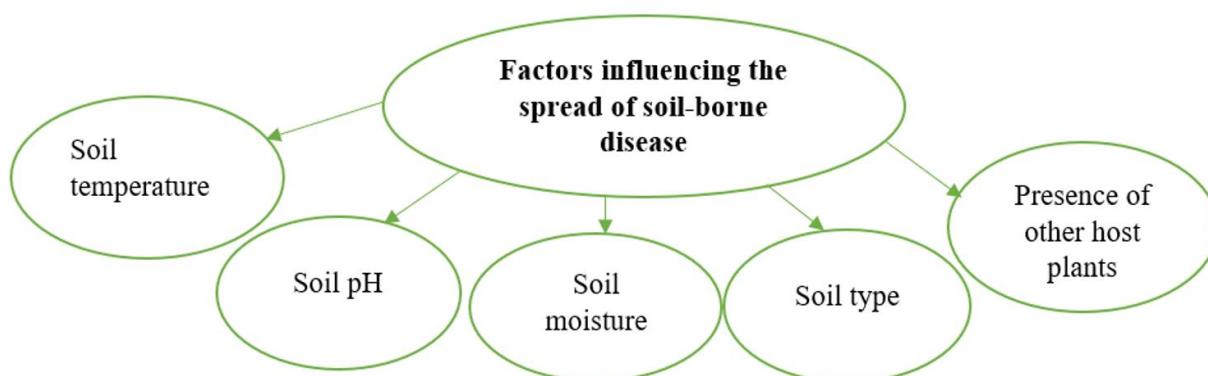



Figure 2. Factors influencing the spread of plant soil-borne diseases.

When biological degradation occurs, it leads to a reduction of soil vegetation cover, decreased vegetation diversity, altered biomass of microbial communities, a change in species and biodiversity composition, loss of soil flora, loss of soil macro and microorganisms and increased pests and diseases [45, 48, 49]. According to Teixeira et al. [50], poor soil structure, low organic matter, low soil fertility, high soil compaction, and insufficient drainage are

all contributing factors to the effects of soil degradation. For example, Fusarium root rot development can be triggered by the environmental conditions of the soil.

Furthermore, plant soil-borne pathogens, which form part of the soil fauna, are thought to be affected by soil degradation [51]. Additionally, Patel et al. [52] indicated that when soil conditions are not favorable, soil-borne pathogens become more damaging. Examples of plant-borne pathogens that have been reported to be impacted by soil degradation include *Rhizoctonia solani*, whose build-up increases in reduced tillage fields, with unmulched fields having lower pathogen populations and severity of the disease.

## 4. Effects of Soil Degradation on Soil-Borne Plant Diseases

### 4.1. Salinization

Soils that exhibit an electrical conductivity of greater than 4 dS m<sup>-1</sup> or less than 40 mM NaCl at 25 °C for the saturation extract are classified as saline. According to estimates, about 20% of land suitable for agriculture is affected by salinity, and it is projected that by 2050, that percentage could reach up to 50% [53]. Several physiological processes (such as respiration, photosynthesis, DNA replication, nutrient and water absorption, respiration, and protein metabolism) are inhibited by high salinity in salt-sensitive plant species and certain salt-tolerant or halophyte species (Table 3) [54, 55]. High salinity inhibits many physiological processes in salt-sensitive plant species as well as some halophytes or salt-tolerant species, including respiration, photosynthesis, DNA replication, water and nutrient absorption, and protein metabolism [54-56].

In highly saline soils, plants are more vulnerable to infection by soil-borne diseases, according to several studies [42, 57, 58]. Certain soil-borne diseases have been found to develop more readily in soil with higher salinities. For instance, a study by Hellman et al. [59] examined by measuring inoculum density, the development of *Fusarium oxysporum* f. sp. *lycopersici* was positively influenced by increased salts from irrigation water and soil. Furthermore, salinity stress makes plants more vulnerable to a range of pathogens, which exacerbates plant diseases by raising the prevalence of disease.

**Table 3.** Effects of salinization on plants.

| Effect                           | Reference (s)                                  |
|----------------------------------|------------------------------------------------|
| Water and nutrient absorption    | Hussain, et al. [54] and Otlewska, et al. [55] |
| DNA replication                  | Otlewska, et al. [55] and Mazhar, et al. [56]  |
| Reduced photosynthetic rate      | Otlewska, et al. [55] and Hussain, et al. [54] |
| Inhibition of respiration        | Jacoby, et al. [57]                            |
| Inhibition of protein metabolism | Bandehagh and Taylor [58]                      |

Under extremely hot conditions, higher salinity affects several processes associated with pathogen growth and development. These include chlamydospore generation, pathogen sporulation in plant vessels, and general fungal development [60]. In Africa, Ethiopia is reported to have the largest salt-affected landmass (11 hectares), making it the seventh in the world (Figure 3).



**Figure 3.** Part of the highly salt-affected area in Ethiopia.  
Source: Qureshi, et al. [61].

According to the findings of an experiment by Haller et al. [62], which examined the impact of elevated salts on the immune system of *Arabidopsis thaliana*, plants became more susceptible to necrotrophic *Botrytis cinerea*, necrotrophic *Alternaria brassicicola*, and hemibiotrophic *Pseudomonas syringae* when the ordinary responses to salt stress are triggered by acting as a regulatory function. The hormonal imbalance resulting from higher salt levels was the cause of enhanced vulnerability of *A. thaliana* [63].

The effect on morpho-physiological and yield attributes resulting from increased severity of Fusarium wilt was recorded from a greenhouse study to assess the combined effect of salinity and *Fusarium oxysporum* f.sp. *cepa*. The effects recorded included a decline in the membrane stability index, total protein content of the leaf, general osmotic potential, and total chlorophyll in onion plants [64-66]. In another in-vitro and pot experiment by Tiwari et al. [67], it was revealed that a significant increase in Fusarium wilt disease severity was caused by the rise in salt concentration. But also, Mansha et al. [64] reported that salinity is an important factor that contributes to increased incidence severity for soil-borne diseases.

### 4.2. Moisture Availability

Soil degradation results in changes in the moisture levels, and it can be aggravated by floods and the desertification process [2]. Soil moisture plays a potential role in the development of soil-borne pathogens. A study

by Narisawa et al. [68] revealed that disease occurrence significantly increases with the rise in the soil moisture level. For example, the disease occurrence at a 40% moisture level is independent of the spore density. An increase in soil moisture significantly increases the level of pathogen colonization in the seedlings, as high moisture promotes spore germination, dispersal and infection [49]. The strong correlation between the increase in humidity and the severity of soil-borne plant diseases was confirmed in a study involving *Pseudomonas syringae* and *M. oryzae* pathogens in the plant phyllosphere.

The soil moisture level affects soil-borne pathogens in several ways such as pathogen survival and growth in the soil [68-70]. Other pathogenic soil-borne microbe groupings, like *R. solanacearum*, have also shown a correlation between moisture levels and the severity of soil-borne diseases [70, 71]. Moisture has been used as the most significant factor in predicting disease occurrence across various regions. Oomycetes and root-infecting fungi are reported as the major groups of plant pathogenic fungi present at various soil moisture levels [72]. High moisture level in the soil facilitates pathogenic plant zoospores' movement to the plant roots [73].

According to Berendsen et al. [74], during high pathogen abundance, the plant response is determined by the ability of the plant to survive stress conditions and the kind of microbes colonizing the roots. However, some species of microbes found in the rhizosphere play a potential role in improving the resistance of plants to pathogens. Also, the amount and composition of the rhizosphere microbiome influence pathogenic microorganisms to colonize the plant roots [71, 75]. Table 4 shows soil-borne disease severity as influenced by the level of moisture conditions in the soil.

**Table 4.** Severity of soil-borne diseases as influenced by different soil moisture conditions.

| Pathogen                       | Host    | Soil moisture condition | Severity of the diseases | Reference                                     |
|--------------------------------|---------|-------------------------|--------------------------|-----------------------------------------------|
| <i>Fusarium spp.</i>           | Cereals | Dry soil                | More severe              | Holloway, et al. [76] and Saad, et al. [77]   |
| <i>Streptomyces scabies</i>    | Potato  | Dry soil                | More severe              | Nisa, et al. [78] and Mushinskiy, et al. [79] |
| <i>Macrophomina phaseoli</i>   | Sorghum | Low soil moisture       | Most severe              | Pandey and Basandri [80]                      |
| <i>Gaeumannomyces graminis</i> | Cereals | Low moisture            | Most severe              | Saad, et al. [81] and Aranda, et al. [82]     |

#### 4.3. Soil Organic Matter

Soil erosion is one of the main causes of the loss of soil organic matter [83]. In comparison to other kinds of organic matter like crop residue, compost can inhibit soil-borne illnesses by 50%, according to a laboratory-scale experiment conducted by Neher et al. [84]. They estimated that 15 tonnes per hectare is the ideal rate of compost usage for controlling soil-borne diseases. However, it has been pointed out that several factors, including soil type, pH, texture, and organic matter type, influence how well compost inhibits soil-borne pathogens [85-88].

Santos et al. [89] added that an aggressive soil-borne pathogen (*Rhizoctonia solani*) infects crops from Solanaceae, Fabaceae, Asteraceae, and Brassicaceae and causes potential yield losses. For instance, *R. solani* was able to cause up to fifty percent yield loss in lettuce cultivated in the US. R. amending the soil with composts prepared from lignocellulosic substrates, such as tree barks, has been reported as an effective approach to control this pathogen.

The depletion of resources such as organic materials by the indigenous microbial communities has been reported as one of the mechanisms used to suppress the growth and infection induced by soil plant pathogens [17, 90]. For instance, Streptomyces spp. tend to utilize wild rocket or rice bran debris, which helps to suppress pathogens such as *Fusarium oxysporum* and potato scab diseases [91-93].

Many soil-borne plant diseases, including Sclerotinia drop (*Sclerotinia sclerotiorum*) of lettuce, *Fusarium* wilt (*F. oxysporum* f. sp. *cucumerinum*) of cucumbers, and *Rhizoctonia* root rot (*Rhizoctonia solani*) on beans and cotton, can be suppressed by adding compost to the growing medium. Compost is essential for the biocontrol of soil-transmitted plant diseases [69, 86].

#### 4.4. Elevated Temperature

The activities of soil microorganisms are highly dependent on soil temperature [94]. This finding aligns with the study by Yan and Nelson Jr [95], which found that a significant reduction in seedling emergence occurred at a soil temperature of 10°C associated with *Fusarium solani* and *F. tricinctum*, whereas infection was achieved at temperatures between 10°C and 20°C. Soil temperature is negatively correlated with soil moisture; this is confirmed by the results of Yan and Nelson Jr [95], who observed that high incidences of soil-borne diseases are recorded during lower temperatures because low moisture favors the growth and development of soil-borne pathogens. At 18°C and 28°C, the majority of infections were observed at soil moisture levels of 20% to 80% WHC and 40% to 80% WHC, respectively. It was shown that *F. solani* disease thrived at 18°C with high soil moisture (60% to 80% WHC) or at 28°C with low soil moisture (20% to 40% WHC). In contrast, *F. tricinctum* disease was more likely to occur in colder temperatures and lower soil moisture levels.

It was found that soil temperature had a substantial impact on the severity of *Fusarium* root rot ( $P < 0.05$ ). From 10 to 20 degrees, there was an increase in the length of lesions and the incidence of diseases caused by *F. solani* and *F. tricinctum*. In the 10 to 20°C temperature range, *F. solani* not only produced more severe illness than *F. tricinctum*, but it also created the longest lesions and had the highest disease prevalence. *F. tricinctum* did not develop diseases in seedlings that survived pre-emergence damping-off at 10°C. Temperature-dependent lesion length and disease incidence for *F. solani* increased from 10 to 20°C, but *F. tricinctum*-induced lesion length and disease prevalence reduced as temperatures increased from 15 to 20°C [95, 96].

According to Delgado-Baquerizo et al. [97], temperature has a positive correlation with the relative abundance of prevalent plant pathogens, and Spearman correlations exist between variables in the environment and the relative abundance of prevalent fungal plant pathogens at the genus level ( $n=235$ ). According to a US experiment aimed at determining the impact of soil temperature on *Helminthosporium sativum* infection of barley and wheat, at a

temperature below 16°C, barley was more freely attacked than wheat. In contrast, the most susceptible barley variety was attacked [98].

#### 4.5. Altered Soil Structure

Since soil structure defines how soil particles are arranged into aggregates, any change in this structure induced by soil erosion or soil compaction leads to reduced soil porosity and aeration [99]. When soil porosity is reduced, it limits soil aeration and water infiltration, which in turn favors anaerobic pathogens. Fusarium wilts caused by Fusarium species are a good example of a disease that is highly severe in poorly aerated soil [100].

##### 4.5.1. Soil Compaction

According to Bogunovic et al. [101], soil compaction is caused by agricultural practices such as overgrazing and the use of large machinery for growing crops and management, which reduce the size of the soil pores. Compacted soil decreases the flow of water and air, leading to anaerobic conditions that are favorable for facultative and anaerobic soil-borne diseases like Fusarium [102-105]. Additionally, inadequate root penetration in compacted soils exposes plants to soil-borne diseases [106].

In the compacted and overgrazed soils, nematode infestations (*Meloidogyne* spp.) are reported to be higher. This is attributable to soil compaction, which leads to a reduced number of beneficial nematodes while leaving the harmful nematodes unaffected [107, 108].

##### 4.5.2. Soil Erosion

When the soil is eroded by agents of erosion such as wind and water, it carries away the topsoil, a layer that is mostly enriched with organic matter, leaving the porous subsoil with poor water retention, thus favoring pathogen survival and spread [6, 109]. For instance, the disease caused by *Phytophthora* species has been reported to be more severe in eroded soils due to waterlogging conditions. Another example is bacterial wilt, which has been reported to increase dramatically in areas where soil erosion and degraded soils predominate. In Southwest Asia, there is a high vulnerability of crops to bacteria because of the extensive deforestation that has been done for establishing palm oil plantations [110-113].

##### 4.5.3. Reduced Organic Matter

Due to its ability to bond to the soil, organic matter in the soil is essential to maintaining proper soil structure [114]. Degraded soils often have lower levels of organic matter, thus rendering poor soil structure. Poor soil structure leads to increased susceptibility to erosion and compaction. This, in turn, creates favourable conditions for pathogens like Fusarium, which thrive in poorly structured soils [115-119].

##### 4.5.4. Waterlogging and Poor Drainage

Altered soil structure often leads to poor drainage, resulting in waterlogged conditions. Waterlogged soils create an anaerobic environment that can promote the growth of pathogens like *Phytophthora* and *Pythium*. These pathogens thrive in saturated soils and can cause severe root diseases [120-122].

##### 4.5.5. Crusting

In some soils, degradation may be accompanied by soil crusting. The crust formed significantly reduces the water infiltration and aeration. In such conditions, there will be poor seedling emergence and root development, which will render the young plants susceptible to the damping-off caused by *Pythium* species [123-125].

##### 4.5.6. Loss of Soil Aggregates

Healthy soils have aggregates formed by the binding of soil particles with organic matter and microbial exudates. These aggregates create a stable soil structure with ample pore spaces. Land degradation, particularly through intensive farming and chemical use, can break down these aggregates, leading to a more homogenous and compact soil matrix. This breakdown not only reduces the soil's resilience to erosion but also diminishes its ability to support a diverse microbial community that can suppress pathogens [123, 125-127].

##### 4.5.7. Reduced Water Infiltration and Retention

Poor soil structure restricts water infiltration and aeration capacity, thus causing waterlogged conditions. Under waterlogging conditions, soil-borne pathogens such as *Phytophthora* [128]. On the other hand, Shahi et al. [129] when dry conditions prevail in the soil, plants become more susceptible to Fusarium wilt. Poor water management in degraded soils can thus create fluctuating moisture conditions that favor different pathogens at different times, challenging disease control efforts [130].

#### 4.6. Nutrition Imbalance

Practices such as overuse of chemicals, deforestation, and over-farming compromise soil health, consequently leading to an increase in the susceptibility of the plants to diseases [131, 132]. A balanced level of nutrients is required for proper plant health and resistance to diseases. In most degraded soils, plant nutrients are deficient, which weakens the plant and renders it susceptible to infection by soil-borne pathogens such as *Fusarium* spp [133, 134].

Among other factors, the richness of microbes in the soil is dependent on nutrient availability as the principal factor; therefore, when the soil is deficient in some nutrients, especially the macronutrients, it negatively affects the richness of microbes in terms of number and species of beneficial microorganisms that can fight and suppress the pathogenic microbes [135].

However, nutrient imbalances, such as excessive nitrogen from over-fertilization, can disrupt this microbial balance. On the other hand, high nitrogen levels can promote the growth of pathogenic fungi like *Pythium*, while reducing the populations of beneficial microbes that help control these pathogens [136, 137].

Some cases of soil-borne pathogens that can survive in nutrient-rich soils have been reported. A good example is (*Meloidogyne* spp.), which causes significant damage to plant roots and can thrive well in nutrient-imbalanced soils, such as in soils with high levels of phosphorus [138]. Similarly, *Verticillium dahliae* and *V. albo-atrum*, which cause verticillium wilt in tomato and potato fields, become more prevalent in soils with an excess amount of potassium, thus increasing the severity of the diseases. These imbalances create an environment conducive to pathogen survival and spread [139, 140].

#### 4.7. Microclimate Changes

The microclimate refers to the climatic conditions in a small, specific area that can differ significantly from the general climate of the region [141].

Studies have shown that the microclimate of an area can be affected due to land degradation, which in turn can increase the severity of soil-borne disease [142]. The loss of vegetation cover and soil organic matter, which consequently leads to elevated soil temperature is aggravated by soil degradation [143, 144].

This is because vegetation helps to moderate temperatures by providing shade and retaining moisture. When this cover is disrupted, soils can become much hotter during the day and significantly cooler at night. A good example is *Rhizoctonia solani*, which causes root rot and becomes more severe in heat-stressed plants vulnerable to pathogens [145, 146].

Similarly, land degradation may lead to poor soil drainage, which directly affects the humidity levels in the soils, which may become lower during dry seasons and higher during the wet seasons. These fluctuating humidity levels can create favourable conditions for various pathogens. High humidity levels can promote the growth of fungal pathogens like *Phytophthora*, which thrive in moist environments, while low humidity can stress plants and make them more susceptible to root diseases [12, 13, 147]. The removal of vegetation through deforestation or overgrazing can alter wind patterns at the micro level. With fewer barriers to block and slow down the wind, degraded lands can experience stronger winds. These winds can dry out the soil, disperse soil particles, and transport soil-borne pathogens to new areas. For instance, the dispersal of nematode cysts by wind can lead to the spread of nematode infestations in previously unaffected areas [15, 16].

Moreover, the loss of vegetation cover, which exposes the soil to increased soil radiation, is a characteristic of degraded soils. This may result in hotter soil temperatures and greater rates of evaporation, which would further reduce soil moisture content. But also, it was claimed by Qadir et al. [148] high levels of solar radiation can also damage plant tissues, making them more susceptible to pathogens. For example, sunscald on the stems and fruits of plants can create entry points for pathogens like *Botrytis cinerea*, which causes grey mould. Table 5 presents examples of soil-borne plant diseases that develop following micro-climate changes in degraded soils.

**Table 5.** Examples of soil-borne plant diseases developing due to a change in microclimate in degraded soils.

| Disease              | Pathogen                      | Crops affected               | The microclimate element affected                             | Causes                                                                                   | The region affected in the world                                   | Reference                                                                               |
|----------------------|-------------------------------|------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Verticillium wilt    | <i>Verticillium dahliae</i>   | Tomatoes and eggplants.      | Increased temperature fluctuations and lower humidity levels. | Removal of olive groves for urban development                                            | Mediterranean region                                               | Gitari, et al. [18]                                                                     |
| Powdery mildew       | <i>Erysiphe spp.</i>          | Wheat and barley             | High humidity and moderate temperatures                       | Removal of olive groves for urban development contributed to these microclimate changes. | Midwest United States                                              | Lehman, et al. [19]                                                                     |
| Fusarium Head Blight | <i>Fusarium graminearum</i>   | Wheat                        | Increased temperature extremes and reduced humidity.          | Deforestation and intensive farming                                                      | In the parts of Canada                                             | Bastida, et al. [20]                                                                    |
| Late Blight          | <i>Phytophthora infestans</i> | Tomatoes                     | Cool and moist conditions                                     | The removal of vegetation for agriculture                                                | In the highlands of East Africa                                    | Menta [21]                                                                              |
| Southern Blight      | <i>Sclerotium rolfsii</i>     | Peanuts, beans, and tomatoes | Higher soil temperatures and reduced organic matter           | The loss of vegetation and organic matter                                                | Southern United States, southern blight has become more prevalent. | Usharani, et al. [22]; Garcia Gonzalez [125]; Le Bissonnais [126] and Xie, et al. [127] |

## 5. Strategies for the Management of Soil-Borne Plant Diseases Under Degraded Soils

Because soil-borne plant diseases significantly limit crop production, especially in degraded soils where nutrient depletion and structural deterioration exacerbate their impact, it is critical for farmers to adopt management practices that effectively manage the diseases, restore soil health, and ensure sustainable crop production [149]. These remedies take a multimodal approach, incorporating biological, cultural, and chemical methods to attenuate disease severity and improve plant resistance [150] (Table 6).

**Table 6.** Strategies for the management of soil-borne plant diseases under degraded soils.

| Diseases management strategy                            | Description                                                                                                                                                                                                   | Example of disease-managed                                                                                                                                                                                            | Reference (s)                                                                                            |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Soil amendment                                          | Addition of SOM to improve soil health and suppress plant soil-borne pathogens.                                                                                                                               | Reduction of Fusarium wilt incidence in tomato fields                                                                                                                                                                 | De Corato [151] and Bonilla, et al. [152]                                                                |
| Crop rotation and diversification                       | To disrupt the life cycles of soil-borne pathogens                                                                                                                                                            | Management of damping-off disease caused by <i>Rhizoctonia solani</i> in solanaceous crops                                                                                                                            | Akber, et al. [153]; Narayanasamy [154] and Dutta [155]                                                  |
| Use of resistant crop varieties                         | To reduce disease severity and improve yield                                                                                                                                                                  | Management of Verticillium wilt disease caused by <i>Verticillium dahliae</i> in potato.                                                                                                                              | Pasche, et al. [156]; Munyaneza and Buzimungu [157] and Sowik, et al. [158]                              |
| Use of antagonistic microorganisms (Biological control) | To suppress pathogenic soil microorganisms                                                                                                                                                                    | Use of <i>Trichoderma</i> spp. to effectively control Fusarium and Rhizoctonia in crops                                                                                                                               | Boro, et al. [159]; Ali and Nadarajah [160]; Suprapta [161]; Verma, et al. [162] and Adnan, et al. [163] |
| Soil solarization                                       | Helps to concentrate solar radiation, which raises the temperature to kill the pathogenic microorganisms.                                                                                                     | Management of Pythium and <i>Phytophthora</i> spp. responsible for causing root rot diseases                                                                                                                          | Elshahawy and Saied [164]; Bennett, et al. [165] and Sharma, et al. [166]                                |
| Anaerobic Soil Disinfection (ASD)                       | It involves saturating the soil with water and covering it to create anaerobic conditions that kill the soil-borne pathogens.                                                                                 | Significant reduction in disease incidence in crops such as strawberries and tomatoes caused by <i>Pythium</i> spp and <i>Fusarium</i> spp.                                                                           | Priyashantha and Attanayake [167]; Hamal [168] and Khadka [169]                                          |
| Biofumigation                                           | This technique involves incorporating specific plant species, such as Brassica crops, into the soil to suppress pathogens. The crop species release bioactive compounds that inhibit the growth of pathogens. | Significant reduction of Fusarium wilt incidence in the tomato field after incorporation of cover crops, leading to healthier growth and higher yields                                                                | Thru Ppoyil [170] and Awrey [171]                                                                        |
| Integrated Disease Management (IDM)                     | A combination of biological methods of control, the use of resistant varieties, and cultural methods such as crop rotation.                                                                                   | Management of Fusarium wilt caused by growing <i>Fusarium oxysporum</i> f.sp. <i>lycopersici</i> -resistant tomato varieties, rotation of tomato with common beans, addition of organic manure, and field sanitation. | Manici, et al. [136]; Katan [31]; Patil, et al. [172] and Baysal-Gurel, et al. [173]                     |

## 6. Future Directives for the Management of Soil-Borne Diseases in Degraded Soils

The use of sustainable agriculture methods to improve soil health and microbial diversity is essential. Biofumigation is a potential technology that involves introducing Brassica family plants into the soil. These plants synthesize glucosinolates, which degrade into beneficial substances that protect against diseases, including Fusarium and Rhizoctonia. Recent research shows that biofumigation considerably reduces disease incidence in crops such as tomatoes and strawberries, resulting in higher yields and plant health [174-176].

Vida et al. [177] demonstrated that using organic amendments like compost improves soil microbial diversity, which is critical for disease suppression. For example, compost application has effectively reduced *Verticillium dahliae* populations in strawberry fields, resulting in healthier plants and greater fruit quality.

Anaerobic Soil Disinfestation (ASD) is an effective option for controlling soil-borne diseases without the use of chemicals. ASD involves saturating the soil and covering it to create anaerobic conditions, which significantly reduce hazardous pathogen populations [168, 178]. For example, ASD has been shown to effectively manage Fusarium and Pythium in a variety of crops, resulting in healthier plants and higher yields. Furthermore, coupling ASD with organic amendments improves its efficacy since organic matter provides a carbon source for beneficial microbial communities during the anaerobic phase [179, 180]. According to Gioia et al. [181], an integrated approach not only helps manage current diseases but also enhances the long-term resilience of degraded soils, making them more than capable of enduring future pathogen pressures and enhancing overall soil health.

## 7. Conclusion

The degraded soils are characterized by conditions that may influence the growth, movement, and survival of pathogens that cause important soil-borne diseases in crops, thus increasing pathogen virulence, disease, and severity. Additionally, in degraded soil, there is a loss of beneficial microbes, such as antagonists that inhibit the growth of plant pathogens. Furthermore, plants in degraded soil are weakened by unfavorable factors, including low soil nutrients, moisture, temperature, and pH, thus rendering them vulnerable to infections by pathogens. On the other hand, plant pathogens have a greater capability to survive extreme conditions or may undergo some modification to survive in degraded soils better than beneficial microbes, thus they can infect in such situations. Since managing severe soil-borne diseases is much trickier, a sustainable disease management approach would be the best option. Sustainable techniques such as minimum tillage, zero tillage, conservation agriculture, proper fertilization, proper grazing, agroforestry, avoiding the use of heavy equipment, use of salt-free water for irrigating crops, water for irrigation, afforestation, re-afforestation, and other activities that reduce the occurrence of climate change need to be adopted to curb the impacts of soil degradation.

## References

- [1] A. Hossain *et al.*, "Agricultural land degradation: Processes and problems undermining future food security. In Environment, climate, plant and vegetation growth." Cham: Springer International Publishing, 2020, pp. 17-61.
- [2] M. A. E. AbdelRahman, "An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications," *Rendiconti Lincei. Scienze Fisiche e Naturali*, vol. 34, no. 3, pp. 767-808, 2023. <https://doi.org/10.1007/s12210-023-01155-3>
- [3] P. Pani, *Land degradation and socio-economic development*. Switzerland: Springer Nature, 2020.
- [4] E. Z. Nungula *et al.*, "Land degradation unmasked as the key constraint in sunflower (*Helianthus annus*) production: Role of GIS in Revitalizing this vital sector," *Cogent Food & Agriculture*, vol. 9, no. 2, p. 2267863, 2023. <https://doi.org/10.1080/23311932.2023.2267863>
- [5] R. Prăvălie, "Exploring the multiple land degradation pathways across the planet," *Earth-Science Reviews*, vol. 220, p. 103689, 2021. <https://doi.org/10.1016/j.earscirev.2021.103689>
- [6] T. Svoray, *Soil erosion: The general problem. In a geoinformatics approach to water erosion: Soil loss and beyond*. Cham: Springer International Publishing, 2022.
- [7] A. Tadesse and W. Hailu, "Causes and consequences of land degradation in Ethiopia: A review," *International Journal of Science and Qualitative Analysis*, vol. 10, no. 1, pp. 10-21, 2024. <https://doi.org/10.11648/j.ijsqa.20241001.12>
- [8] H. K. Gibbs and J. M. Salmon, "Mapping the world's degraded lands," *Applied Geography*, vol. 57, pp. 12-21, 2015. <https://doi.org/10.1016/j.apgeog.2014.11.024>
- [9] H. Eswaran, R. Lal, and P. Reich, *Land degradation: An overview. In Response to land degradation*. United States: Springer, 2019.
- [10] R. Lal, *Soil erosion by wind and water: problems and prospects. In Soil erosion research methods*. United Kingdom: Routledge, 2017.
- [11] A. R. B. Cammerino, M. Ingaramo, and M. Monteleone, "Complementary approaches to planning a restored coastal wetland and assessing the role of agriculture and biodiversity: An applied case study in Southern Italy," *Water*, vol. 16, no. 1, p. 153, 2024. <https://doi.org/10.3390/w16010153>
- [12] D. Mandal, M. Chandrakala, N. M. Alam, T. Roy, and U. Mandal, "Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India," *Catena*, vol. 204, p. 105440, 2021. <https://doi.org/10.1016/j.catena.2021.105440>
- [13] C. S. S. Ferreira, S. Seifollahi-Aghmiuni, G. Destouni, N. Ghajarnia, and Z. Kalantari, "Soil degradation in the European Mediterranean region: Processes, status and consequences," *Science of the Total Environment*, vol. 805, p. 150106, 2022. <https://doi.org/10.1016/j.scitotenv.2021.150106>
- [14] E. Saljnikov *et al.*, *Understanding and monitoring chemical and biological soil degradation. In Advances in understanding soil degradation*. Cham: Springer, 2022.
- [15] A. Joshi, D. Arora, and R. Kumar, "A review impact of soil erosion on agriculture," *Asian Journal of Multidimensional Research*, vol. 10, no. 10, pp. 373-380, 2021.
- [16] P. G. Curtis, C. M. Slay, N. L. Harris, A. Tyukavina, and M. C. Hansen, "Classifying drivers of global forest loss," *Science*, vol. 361, no. 6407, pp. 1108-1111, 2018. <https://doi.org/10.1126/science.aau3445>
- [17] L. R. Chappa *et al.*, *Microbial remediation of fluoride-contaminated water. In: Sharma, K. (Ed) Fluorides in drinking water. environmental science and engineering*. Cham: Springer, 2025.
- [18] H. I. Gitari *et al.*, *Agroforestry for climate security. In A. Raj, M. K. Jharia, A. Banerjee, R. K. Jha, & K. P. Singh (Eds.), Agroforestry*. United States: Wiley-Scrivener, 2024.
- [19] R. M. Lehman *et al.*, "Understanding and enhancing soil biological health: The solution for reversing soil degradation," *Sustainability*, vol. 7, no. 1, pp. 988-1027, 2015. <https://doi.org/10.3390/su7010988>
- [20] F. Bastida, A. Zsolnay, T. Hernández, and C. García, "Past, present and future of soil quality indices: A biological perspective," *Geoderma*, vol. 147, no. 3-4, pp. 159-171, 2008. <https://doi.org/10.1016/j.geoderma.2008.08.007>
- [21] C. Menta, *Soil fauna diversity—function, soil degradation, biological indices, soil restoration. In Biodiversity conservation and utilization in a diverse world*. Germany: Springer, 2012.
- [22] K. Usharani, K. Roopashree, and D. Naik, "Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture," *Journal of Pharmacognosy and Phytochemistry*, vol. 8, no. 5, pp. 1256-1267, 2019.
- [23] K. T. Osman, *Soil degradation, conservation and remediation*. Dordrecht: Springer Netherlands, 2014.
- [24] N. Dragović and T. Vulević, *Soil degradation processes, causes, and assessment approaches. In Life on land*. Cham: Springer International Publishing, 2020.
- [25] K. T. Osman, *Chemical soil degradation. In Soil degradation, conservation and remediation*. Dordrecht: Springer Netherlands, 2013.
- [26] U. Mishra and D. W. Dhar, "Biodiversity and biological degradation of soil," *Resonance*, vol. 9, no. 1, pp. 26-33, 2004. <https://doi.org/10.1007/BF02902526>
- [27] R. E. O'Dea *et al.*, "Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: A PRISMA extension," *Biological Reviews*, vol. 96, no. 5, pp. 1695-1722, 2021. <https://doi.org/10.1111/brv.12721>
- [28] S. H. Marzouk, H. J. Tindwa, N. A. Amuri, and J. M. Semoka, "An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production," *Helijon*, vol. 9, no. 1, p. e13040, 2023. <https://doi.org/10.1016/j.heliyon.2023.e13040>
- [29] V. J. White, J. M. Glanville, C. Lefebvre, and T. A. Sheldon, "A statistical approach to designing search filters to find systematic reviews: Objectivity enhances accuracy," *Journal of Information Science*, vol. 27, no. 6, pp. 357-370, 2001. <https://doi.org/10.1177/016555150102700601>
- [30] P. Lucas, *Diseases caused by soil-borne pathogens. In The epidemiology of plant diseases*. Dordrecht: Springer Netherlands, 2006.
- [31] J. Katan, "Diseases caused by soilborne pathogens: biology, management and challenges," *Journal of Plant Pathology*, vol. 99, no. 2, pp. 305-315, 2017.
- [32] K. O'Donnell, H. C. Kistler, E. Cigelnik, and R. C. Ploetz, "Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies," *Proceedings of the National Academy of Sciences*, vol. 95, no. 5, pp. 2044-2049, 1998. <https://doi.org/10.1073/pnas.95.5.2044>

- [33] M. M. Rashid *et al.*, *Detection and diagnosis of important soil-borne diseases: An overview*. In *Rhizosphere Microbes: Biotic Stress Management*. Germany: Springer, 2022.
- [34] N. Dauda, O. Adewuyi, U. Ishieze, K. Ugwuoke, and U. Ukwu, "Farmer's unseen enemy: Soilborne pathogens and its' management," *Nigerian Journal of Horticultural Science*, vol. 26, no. 4, pp. 96-106, 2022.
- [35] P. Dutta *et al.*, "Nanotechnological approaches for management of soil-borne plant pathogens," *Frontiers in Plant Science*, vol. 14, p. 1136233, 2023. <https://doi.org/10.3389/fpls.2023.1136233>
- [36] N. O. Devi, R. K. Tombisana Devi, M. Debbarma, M. Hajong, and S. Thokchom, "Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by *Fusarium oxysporum* f. sp. *lycopersici*," *Egyptian Journal of Biological Pest Control*, vol. 32, no. 1, pp. 1-14, 2022. <https://doi.org/10.1186/s41938-021-00499-y>
- [37] A. I. Heflish, "Isolation and molecular characterization of *Rhizoctonia solani* the causal agent of cotton damping-off disease," *Egyptian Academic Journal of Biological Sciences, G. Microbiology*, vol. 12, no. 2, pp. 89-99, 2020.
- [38] T. F. Bekker, "Efficacy of water soluble silicon for control of *Phytophthora cinnamomi* root rot of avocado," Doctoral Dissertation, University of Pretoria, 2011.
- [39] G. S. Saharan, N. K. Mehta, and P. D. Meena, *Clubroot disease of crucifers*. Singapore: Springer, 2021.
- [40] D. Yashwanth and K. S. Nayaka, "Studies on soil borne fungal diseases in forest nursery and their control measures," Doctoral Dissertation, College of Forestry, Ponnampet Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Shivamogga, 2023.
- [41] M. Panth, S. C. Hassler, and F. Baysal-Gurel, "Methods for management of soilborne diseases in crop production," *Agriculture*, vol. 10, no. 1, p. 16, 2020. <https://doi.org/10.3390/agriculture10010016>
- [42] M. A. Sulaiman and S. K. Bello, "Biological control of soil-borne pathogens in arid lands: A review," *Journal of Plant Diseases and Protection*, vol. 131, no. 2, pp. 293-313, 2024. <https://doi.org/10.1007/s41348-023-00824-7>
- [43] A. B. Moura, D. Backhouse, T. I. De Souza Júnior, and C. B. Gomes, *Soilborne pathogens*. In T. S. de Oliveira & R. W. Bell (Eds.), *Subsoil Constraints for Crop Production*. Cham, Switzerland: Springer International Publishing, 2022.
- [44] R. Ghorbani, S. Wilcockson, A. Koocheki, and C. Leifert, "Soil management for sustainable crop disease control: A review," *Environmental Chemistry Letters*, vol. 6, no. 3, pp. 149-162, 2008. <https://doi.org/10.1007/s10311-008-0147-0>
- [45] F. Bastida, D. J. Eldridge, C. García, G. Kenny Png, R. D. Bardgett, and M. Delgado-Baquerizo, "Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes," *The ISME Journal*, vol. 15, no. 7, pp. 2081-2091, 2021. <https://doi.org/10.1038/s41396-021-00906-0>
- [46] M. G. Kibblewhite, K. Ritz, and M. J. Swift, "Soil health in agricultural systems," *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 363, no. 1492, pp. 685-701, 2008. <https://doi.org/10.1098/rstb.2007.2178>
- [47] M. Mazzola, "Assessment and management of soil microbial community structure for disease suppression," *Annual Review of Phytopathology*, vol. 42, no. 1, pp. 35-59, 2004. <https://doi.org/10.1146/annurev.phyto.42.040803.140408>
- [48] P. Ekka, S. Patra, M. Upreti, G. Kumar, A. Kumar, and P. Saikia, *Land degradation and its impacts on biodiversity and ecosystem services. In Land and environmental management through forestry*. Germany: Springer, 2023.
- [49] J. Domínguez-Begines, J. M. Ávila, L. V. García, and L. Gómez-Aparicio, "Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests," *New Phytologist*, vol. 227, no. 2, pp. 588-600, 2020. <https://doi.org/10.1111/nph.16467>
- [50] M. P. R. Teixeira *et al.*, "Near-infrared spectroscopy as an alternative tool for predicting soil erodibility in a watershed under desertification," *Land Degradation & Development*, vol. 35, no. 4, pp. 1526-1540, 2024. <https://doi.org/10.1002/lrd.5003>
- [51] B. E. A. Dignam *et al.*, "Impacts of soil-borne disease on plant yield and farm profit in dairy soils," *Journal of Sustainable Agriculture and Environment*, vol. 1, no. 1, pp. 16-29, 2022. <https://doi.org/10.1002/sae2.12009>
- [52] R. Patel *et al.*, "Plant pathogenicity and associated/related detection systems. A review," *Talanta*, vol. 251, p. 123808, 2023. <https://doi.org/10.1016/j.talanta.2022.123808>
- [53] K. Negacz, Ž. Malek, A. De Vos, and P. Vellinga, "Saline soils worldwide: Identifying the most promising areas for saline agriculture," *Journal of Arid Environments*, vol. 203, p. 104775, 2022. <https://doi.org/10.1016/j.jaridenv.2022.104775>
- [54] S. Hussain *et al.*, "Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond," *Plant Physiology and Biochemistry*, vol. 160, pp. 239-256, 2021. <https://doi.org/10.1016/j.plaphy.2021.01.029>
- [55] A. Otlewska *et al.*, "When salt meddles between plant, soil, and microorganisms," *Frontiers in Plant Science*, vol. 11, p. 553087, 2020. <https://doi.org/10.3389/fpls.2020.553087>
- [56] S. Mazhar, E. Pellegrini, M. Contin, C. Bravo, and M. De Nobili, "Impacts of salinization caused by sea level rise on the biological processes of coastal soils-A review," *Frontiers in Environmental Science*, vol. 10, p. 909415, 2022. <https://doi.org/10.3389/fenvs.2022.909415>
- [57] R. P. Jacoby, N. L. Taylor, and A. H. Millar, "The role of mitochondrial respiration in salinity tolerance," *Trends in Plant Science*, vol. 16, no. 11, pp. 614-623, 2011. <https://doi.org/10.1016/j.tplants.2011.08.002>
- [58] A. Bandehagh and N. L. Taylor, "Can alternative metabolic pathways and shunts overcome salinity induced inhibition of central carbon metabolism in crops?," *Frontiers in Plant Science*, vol. 11, p. 1072, 2020. <https://doi.org/10.3389/fpls.2020.01072>
- [59] E. M. Hellman, T. Turini, and C. L. Swett, "Impacts of increasing soil salinity on genetic resistance (I-3 Gene)-Based management of fusarium wilt (*Fusarium oxysporum* f. sp. *lycopersici* Race 3) in California Processing Tomatoes," *Phytopathology®*, vol. 114, no. 10, pp. 2252-2261, 2024. <https://doi.org/10.1094/PHYTO-10-23-0402-KC>
- [60] B. Boumaaza *et al.*, "Impact of salinity on the behavior of fungi," *International Journal of Agriculture and Biosciences*, vol. 11, no. 3, pp. 139-147, 2022.
- [61] A. S. Qureshi, T. E. Mohammad, and M. Minaleshoa, *Prospects of alternative agricultural systems to improve the productivity of marginal lands in Ethiopia*. In Choukr-Allah, R., Ragab, R. (Eds.), *Biosaline Agriculture as a Climate Change Adaptation for Food Security*. Cham: Springer, 2023.
- [62] E. Haller *et al.*, "ABA-dependent salt stress tolerance attenuates Botrytis immunity in *Arabidopsis*," *Frontiers in Plant Science*, vol. 11, p. 594827, 2020. <https://doi.org/10.3389/fpls.2020.594827>
- [63] B. A. López-Ruiz, E. Zluhán-Martínez, M. d. l. P. Sánchez, E. R. Álvarez-Buylla, and A. Garay-Arroyo, "Interplay between hormones and several abiotic stress conditions on *Arabidopsis thaliana* primary root development," *Cells*, vol. 9, no. 12, p. 2576, 2020. <https://doi.org/10.3390/cells9122576>
- [64] M. Z. Mansha *et al.*, "Impact of various salinity levels and *Fusarium oxysporum* as stress factors on the morpho-physiological and yield attributes of onion," *Horticulturae*, vol. 9, no. 7, p. 786, 2023. <https://doi.org/10.3389/horticulturae9070786>
- [65] A. Solouki, J. Á. Berna-Sicilia, A. Martínez-Alonso, N. Ortiz-Delvasto, G. Bárzana, and M. Carvajal, "Onion plants (*Allium cepa* L.) react differently to salinity levels according to the regulation of aquaporins," *Heliyon*, vol. 9, no. 3, p. e13815, 2023.
- [66] M. F. Dawood and A. A. H. A. Latef, *Allium cepa under stressful conditions*. In *Medicinal plant responses to stressful conditions*. USA: CRC Press, 2023.
- [67] R. K. Tiwari *et al.*, "Salt stress influences the proliferation of *Fusarium solani* and enhances the severity of wilt disease in potato," *Heliyon*, vol. 10, no. 4, p. e26718, 2024. <https://doi.org/10.1016/j.heliyon.2024.e26718>
- [68] K. Narisawa, M. Shimura, F. Usuki, S. Fukuhara, and T. Hashiba, "Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by *Heteroconium chaetospira*," *Plant Disease*, vol. 89, no. 3, pp. 285-290, 2005. <https://doi.org/10.1094/PD-89-0285>
- [69] G. Bonanomi, V. Antignani, C. Pane, and F. Scala, "Suppression of soilborne fungal diseases with organic amendments," *Journal of Plant Pathology*, vol. 89, no. 3, pp. 311-324, 2007.
- [70] H. Li, H. Zhu, X. Wei, B. Liu, and M. Shao, "Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China," *Agriculture, Ecosystems & Environment*, vol. 314, p. 107388, 2021. <https://doi.org/10.1016/j.agee.2021.107388>
- [71] Q. Qu *et al.*, "Rhizosphere microbiome assembly and its impact on plant growth," *Journal of Agricultural and Food Chemistry*, vol. 68, no. 18, pp. 5024-5038, 2020. <https://doi.org/10.1021/acs.jafc.0c00073>

- [72] G. R. Dixon and E. L. Tilston, *Dixon, G. R., & Tilston, E. L. (2010). Soil-borne pathogens and their interactions with the soil environment. In Soil microbiology and sustainable crop production.* Dordrecht: Springer, 2010.
- [73] H. S. Judelson and F. A. Blanco, "The spores of Phytophthora: Weapons of the plant destroyer," *Nature Reviews Microbiology*, vol. 3, no. 1, pp. 47-58, 2005. <https://doi.org/10.1038/nrmicro1064>
- [74] R. L. Berendsen, C. M. J. Pieterse, and P. A. H. M. Bakker, "The rhizosphere microbiome and plant health," *Trends in Plant Science*, vol. 17, no. 8, pp. 478-486, 2012. <https://doi.org/10.1016/j.tplants.2012.04.001>
- [75] L. Mangeot-Peter, T. J. Tschaplinski, N. L. Engle, C. Veneault-Fourrey, F. Martin, and A. Deveau, "Impacts of soil microbiome variations on root colonization by fungi and bacteria and on the metabolome of *Populus tremulax alba*," *Phytobiomes Journal*, vol. 4, no. 2, pp. 142-155, 2020. <https://doi.org/10.1094/PBIOMES-08-19-0042-R>
- [76] G. J. Hollaway, M. L. Evans, H. Wallwork, C. B. Dyson, and A. C. McKay, "Yield loss in cereals, caused by *Fusarium culmorum* and *F. pseudograminearum*, is related to fungal DNA in soil prior to planting, rainfall, and cereal type," *Plant Disease*, vol. 97, no. 7, pp. 977-982, 2013. <https://doi.org/10.1094/PDIS-09-12-0867-RE>
- [77] A. Saad, B. Macdonald, A. Martin, N. L. Knight, and C. Percy, "Comparison of disease severity caused by four soil-borne pathogens in winter cereal seedlings," *Crop and Pasture Science*, vol. 72, no. 5, pp. 325-334, 2021. <https://doi.org/10.1071/CP20245>
- [78] T. Nisa, M. Haq, T. Mukhtar, M. A. Khan, and G. Irshad, "Incidence and severity of common scab of potato caused by *Streptomyces* scabies in Punjab, Pakistan," *Pakistan Journal of Botany*, vol. 54, no. 2, pp. 723-729, 2022.
- [79] A. Mushinskiy, E. Aminova, A. Z. Saudabaeva, E. Dranaya, and A. Vasiliev, "Morbidity of different potato (*Solanum tuberosum*) varieties caused by *Streptomyces* scabies and *Fusarium oxysporum* in irrigated conditions of the Orenburg region," *Research on Crops*, vol. 22, no. spl, pp. 42-48, 2021.
- [80] A. K. Pandey and A. K. Basandrai, "Will *Macrophomina phaseolina* spread in legumes due to climate change? A critical review of current knowledge," *Journal of Plant Diseases and Protection*, vol. 128, no. 1, pp. 9-18, 2021. <https://doi.org/10.1007/s41348-020-00374-2>
- [81] A. Saad, B. Macdonald, A. Martin, N. L. Knight, and C. Percy, "Winter cereal reactions to common root rot and crown rot pathogens in the field," *Agronomy*, vol. 12, no. 10, p. 2571, 2022. <https://doi.org/10.3390/agronomy12102571>
- [82] C. Aranda *et al.*, "Melanin induction restores the pathogenicity of *Gaeumannomyces graminis* var. *tritici* in wheat plants," *Journal of Fungi*, vol. 9, no. 3, p. 350, 2023. <https://doi.org/10.3390/jof9030350>
- [83] M. López-Vicente, H. Kramer, and S. Keesstra, "Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest," *Journal of Environmental Management*, vol. 278, p. 111510, 2021. <https://doi.org/10.1016/j.jenvman.2020.111510>
- [84] D. A. Neher, H. A. Hoitink, J. Biala, R. Rynk, and G. Black, *Compost use for plant disease suppression. In The Composting Handbook*. USA: Academic Press, 2022.
- [85] M. R. A. Keloth, M. Rana, and A. Tomer, *Efficacy of organic substrates for management of soil-borne plant pathogens*, *Organic Farming for Sustainable Development*. USA: Apple Academic Press, 2022.
- [86] C. M. Mehta, U. Palni, I. H. Franke-Whittle, and A. K. Sharma, "Compost: Its role, mechanism and impact on reducing soil-borne plant diseases," *Waste Management*, vol. 34, no. 3, pp. 607-622, 2014. <https://doi.org/10.1016/j.wasman.2013.11.012>
- [87] R. Thakur, S. Verma, S. Gupta, G. Negi, and P. Bhardwaj, "Role of soil health in plant disease management: a review," *Agricultural Reviews*, vol. 43, no. 1, pp. 70-76, 2022.
- [88] Y. Zhang *et al.*, "Priming of soil organic carbon decomposition induced by exogenous organic carbon input depends on vegetation and soil depth in coastal salt marshes," *Soil Systems*, vol. 8, no. 1, p. 34, 2024. <https://doi.org/10.3390/soilsystems8010034>
- [89] C. Santos *et al.*, "Evaluation of the potential of agro-industrial waste-based composts to control *Botrytis* gray mold and soilborne fungal diseases in lettuce," *Processes*, vol. 9, no. 12, p. 2231, 2021. <https://doi.org/10.3390/pr9122231>
- [90] K. L. Bailey and G. Lazarovits, "Suppressing soil-borne diseases with residue management and organic amendments," *Soil and Tillage Research*, vol. 72, no. 2, pp. 169-180, 2003. [https://doi.org/10.1016/S0167-1987\(03\)00086-2](https://doi.org/10.1016/S0167-1987(03)00086-2)
- [91] E. Klein, M. Ofek, J. Katan, D. Minz, and A. Gamliel, "Soil suppressiveness to *Fusarium* disease: Shifts in root microbiome associated with reduction of pathogen root colonization," *Phytopathology*, vol. 103, no. 1, pp. 23-33, 2013. <https://doi.org/10.1094/PHYTO-12-11-0349>
- [92] Y. Zhou *et al.*, "Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease," *Nature Communications*, vol. 14, no. 1, p. 8126, 2023. <https://doi.org/10.1038/s41467-023-43926-4>
- [93] P. P. Jambhulkar, M. Sharma, D. Lakshman, and P. Sharma, *Natural mechanisms of soil suppressiveness against diseases caused by *Fusarium*, *Rhizoctonia*, *Pythium*, and *Phytophthora**. In *Organic amendments and soil suppressiveness in plant disease management*. Cham: Springer International Publishing, 2015.
- [94] A. Pérez Hernández, "Etiology, epidemiology and control of *Fusarium* crown and foot rot of zucchini caused by *Fusarium solani* f. sp. *cucurbitae*," Doctoral Dissertation, University of Almería, 2020.
- [95] H. Yan and B. Nelson Jr, "Effects of soil type, temperature, and moisture on development of *Fusarium* root rot of soybean by *Fusarium solani* (FSSC 11) and *Fusarium tricinctum*," *Plant Disease*, vol. 106, no. 11, pp. 2974-2983, 2022. <https://doi.org/10.1094/PDIS-12-21-2738-RE>
- [96] H. Yan and B. Nelson Jr, "Effects of spore density and interaction with *Heterodera glycines* on soybean root rot caused by *Fusarium solani* and *F. tricinctum*," *Plant Disease*, vol. 105, no. 9, pp. 2426-2434, 2021. <https://doi.org/10.1094/PDIS-09-20-1944-RE>
- [97] M. Delgado-Baquerizo *et al.*, "The proportion of soil-borne pathogens increases with warming at the global scale," *Nature Climate Change*, vol. 10, no. 6, pp. 550-554, 2020. <https://doi.org/10.1038/s41558-020-0759-3>
- [98] C. Cui, D. Li, L.-J. Wang, and Y. Wang, "Microstructure of extrusion-cooked whole grain in controlling product quality," *Food Reviews International*, vol. 40, no. 6, pp. 1621-1646, 2024. <https://doi.org/10.1080/87559129.2023.2227981>
- [99] A. Yudina and Y. Kuzyakov, "Dual nature of soil structure: The unity of aggregates and pores," *Geoderma*, vol. 434, p. 116478, 2023. <https://doi.org/10.1016/j.geoderma.2023.116478>
- [100] K. G. Pegg, L. M. Coates, W. T. O'Neill, and D. W. Turner, "The epidemiology of *Fusarium* wilt of banana," *Frontiers in Plant Science*, vol. 10, p. 1395, 2019. <https://doi.org/10.3389/fpls.2019.01395>
- [101] N. Bogunovic, J. P. Meekel, D. Micha, J. D. Blankensteijn, P. L. Hordijk, and K. K. Yeung, "Impaired smooth muscle cell contractility as a novel concept of abdominal aortic aneurysm pathophysiology," *Scientific Reports*, vol. 9, no. 1, p. 6837, 2019. <https://doi.org/10.1038/s41598-019-43329-3>
- [102] S. Gürsoy, "Agricultural Production: Its Main Causes, Effects and Management," *Technology in Agriculture*, vol. 10, no. 2, pp. 1-18, 2021.
- [103] W. Hu, J. Drewry, M. Beare, A. Eger, and K. Müller, "Compaction induced soil structural degradation affects productivity and environmental outcomes: A review and New Zealand case study," *Geoderma*, vol. 395, p. 115035, 2021. <https://doi.org/10.1016/j.geoderma.2021.115035>
- [104] E. B. Kabir, H. Bashari, M. Bassiri, and M. R. Mosaddeghi, "Effects of land-use/cover change on soil hydraulic properties and pore characteristics in a semi-arid region of central Iran," *Soil and Tillage Research*, vol. 197, p. 104478, 2020. <https://doi.org/10.1016/j.still.2019.104478>
- [105] M. A. Ayub *et al.*, *Restoration of degraded soil for sustainable agriculture*. In *Soil health restoration and management*. Singapore: Springer, 2019.
- [106] S. M. Sinton *et al.*, "Yield depression in New Zealand potato crops associated with soil compaction and soil-borne diseases," *American Journal of Potato Research*, vol. 99, no. 2, pp. 160-173, 2022. <https://doi.org/10.1007/s12230-022-09864-5>
- [107] M. V. Braunack and J. E. McPhee, "The impact of soil compaction on soil health, crop yield, and resilience to climate variability: A review," *Soil & Tillage Research*, vol. 199, p. 104597, 2020.
- [108] M. A. Hamza and W. K. Anderson, "Soil compaction in cropping systems: A review of the nature, causes and possible solutions," *Soil and Tillage Research*, vol. 82, no. 2, pp. 121-145, 2005. <https://doi.org/10.1016/j.still.2004.08.009>
- [109] K. E. Spaeth Jr, *Soil health on the farm, ranch, and in the garden*. Cham, Switzerland: Springer, 2020.

- [110] P. Borrelli *et al.*, "An assessment of the global impact of 21st century land use change on soil erosion," *Nature Communications*, vol. 8, no. 1, p. 2013, 2017. <https://doi.org/10.1038/s41467-017-02142-7>
- [111] D. Pimentel, "Soil erosion: A food and environmental threat," *Environment, Development and Sustainability*, vol. 8, no. 1, pp. 119-137, 2006.
- [112] D. R. Montgomery, "Soil erosion and agricultural sustainability," *Proceedings of the National Academy of Sciences*, vol. 104, no. 33, pp. 13268-13272, 2007. <https://doi.org/10.1073/pnas.0611508104>
- [113] P. Panagos *et al.*, "Global rainfall erosivity assessment based on high-temporal resolution rainfall records," *Scientific Reports*, vol. 7, no. 1, p. 4175, 2017. <https://doi.org/10.1038/s41598-017-04282-8>
- [114] S. S. Bashir *et al.*, "Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms," *Biotechnology & Biotechnological Equipment*, vol. 35, no. 1, pp. 1912-1925, 2021. <https://doi.org/10.1080/13102818.2021.2020161>
- [115] J. Lehmann and M. Kleber, "The contentious nature of soil organic matter," *Nature*, vol. 528, no. 7580, pp. 60-68, 2015. <https://doi.org/10.1038/nature16069>
- [116] J. Six, R. T. Conant, E. A. Paul, and K. Paustian, "Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils," *Plant and Soil*, vol. 241, no. 2, pp. 155-176, 2002. <https://doi.org/10.1023/A:1016125726789>
- [117] R. Lal, "Challenges and opportunities in soil organic matter research," *European Journal of Soil Science*, vol. 60, no. 2, pp. 158-169, 2009. <https://doi.org/10.1111/j.1365-2389.2008.01114.x>
- [118] E. E. Oldfield, M. A. Bradford, and S. A. Wood, "Global meta-analysis of the relationship between soil organic matter and crop yields," *Soil*, vol. 5, no. 1, pp. 15-32, 2019.
- [119] S. Lutz *et al.*, "Harnessing the microbiomes of suppressive composts for plant protection: From metagenomes to beneficial microorganisms and reliable diagnostics," *Frontiers in Microbiology*, vol. 11, p. 1810, 2020. <https://doi.org/10.3389/fmicb.2020.01810>
- [120] J. M. Raaijmakers, T. C. Paulitz, C. Steinberg, C. Alabouvette, and Y. Moënne-Locoz, "The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms," *Plant and Soil*, vol. 321, no. 1-2, pp. 341-361, 2009.
- [121] R. N. Sturrock *et al.*, "Climate change and forest diseases," *Plant Pathology*, vol. 60, no. 1, pp. 133-149, 2011. <https://doi.org/10.1111/j.1365-3059.2010.02406.x>
- [122] R. Gao *et al.*, "Effects of anaerobic conditions on soil microbial communities and soil-borne diseases in a continuous cropping system," *Applied Soil Ecology*, vol. 176, p. 104456, 2022.
- [123] Y. R. Alnaser and Q. D. Alkhafagi, "Soil surface crust: Its significance, types and mechanics of formation. a review," *Mesopotamia Journal of Agriculture*, vol. 48, no. 4, pp. 75-85, 2020.
- [124] R. Chhabra and R. Chhabra, *Trees and grasses as alternate strategies for management of salt-affected soils. In Salt-affected Soils and Marginal Waters: Global Perspectives and Sustainable Management*. Cham, Switzerland: Springer International Publishing, 2021.
- [125] J. F. Garcia Gonzalez, "Investigating management alternatives for southern blight on vegetables in the mid-Atlantic United States," Doctoral Dissertation, Virginia Tech, Blacksburg, VA, USA, 2021.
- [126] Y. Le Bissonnais, "Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology," *European Journal of Soil Science*, vol. 47, no. 4, pp. 425-437, 1996. <https://doi.org/10.1111/j.1365-2389.1996.tb01843.x>
- [127] Y. Xie, J. Tang, Y. Gao, Z. Gu, G. Liu, and X. Ren, "Spatial distribution of soil erosion and its impacts on soil productivity in Songnen typical black soil region," *International Soil and Water Conservation Research*, vol. 11, no. 4, pp. 649-659, 2023. <https://doi.org/10.1016/j.iswcr.2023.01.002>
- [128] M. González-Guzmán, A. Gómez-Cadenas, and V. Arbona, *Citrus responses under waterlogging. In Citrus production*. USA: CRC Press, 2022.
- [129] D. K. Shahi, S. Kachhap, A. Kumar, and B. K. Agarwal, *Organic agriculture for plant disease management. In K. P. Singh, S. Jahagirdar, & B. K. Sarma (Eds.), Emerging Trends in Plant Pathology*. Singapore: Springer, 2021.
- [130] K. Timmis and J. L. Ramos, "The soil crisis: The need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy," *Microbial Biotechnology*, vol. 14, no. 3, pp. 769-797, 2021. <https://doi.org/10.1111/1751-7915.13771>
- [131] S. A. Miller, J. P. Ferreira, and J. T. LeJeune, "Antimicrobial use and resistance in plant agriculture: A one health perspective," *Agriculture*, vol. 12, no. 2, p. 289, 2022. <https://doi.org/10.3390/agriculture12020289>
- [132] A. O. Akanmu *et al.*, "Plant disease management: Leveraging on the plant-microbe-soil interface in the biorational use of organic amendments," *Frontiers in Plant Science*, vol. 12, p. 700507, 2021. <https://doi.org/10.3389/fpls.2021.700507>
- [133] N. Gupta, S. Debnath, S. Sharma, P. Sharma, and J. Purohit, *Role of nutrients in controlling the plant diseases in sustainable agriculture. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally Important Microbes for Sustainable Agriculture: Applications in Crop Production and Protection*. Singapore: Springer, 2017.
- [134] R. Gopi, G. B. Madhavi, C. Kapoor, C. Raj, S. Singh, and T. Ramprakash, *Role of mineral nutrients in the management of plant diseases. In S. Nehra & P. C. Trivedi (Eds.), Plant disease management strategies*. Jodhpur, India: Agrobios Research, 2021.
- [135] M. G. A. Van Der Heijden, R. D. Bardgett, and N. M. Van Straalen, "The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems," *Ecology Letters*, vol. 11, no. 3, pp. 296-310, 2008. <https://doi.org/10.1111/j.1461-0248.2007.01139.x>
- [136] L. M. Manici, F. Caputo, and V. Babini, "Effect of green manure on *Pythium* spp. population and microbial communities in intensive cropping systems," *Plant and Soil*, vol. 263, no. 1, pp. 133-142, 2004. <https://doi.org/10.1023/B:PLSO.0000047720.40918.29>
- [137] R. Binyamin, S. M. Nadeem, S. Akhtar, M. Y. Khan, and R. Anjum, "Beneficial and pathogenic plant-microbe interactions: A review," *Soil & Environment*, vol. 38, no. 2, pp. 127-150, 2019.
- [138] D. Hurchanik, D. Schmitt, N. Hue, and B. Sipes, "Plant nutrient partitioning in coffee infected with *Meloidogyne konaensis*," *Journal of Nematology*, vol. 36, no. 1, pp. 76-84, 2004.
- [139] A. Habteweld, M. Kantor, C. Kantor, and Z. Handoo, "Understanding the dynamic interactions of root-knot nematodes and their host: Role of plant growth promoting bacteria and abiotic factors," *Frontiers in Plant Science*, vol. 15, p. 1377453, 2024.
- [140] M. d. A. Noronha, M. F. Fernandes, S. M. Maria de Fatima, E. M. R. Pedrosa, M. C. Assunção, and L. C. d. S. Calheiros, "Soil abiotic factors associated with *Meloidogyne* spp. and *Pratylenchus* spp. populations in sugarcane," *Nematology*, vol. 23, no. 2, pp. 125-137, 2020.
- [141] J. J. Lembrechts and J. Lenoir, "Microclimatic conditions anywhere at any time!," *Global Change Biology*, vol. 26, no. 2, pp. 337-339, 2020. <https://doi.org/10.1111/gcb.14942>
- [142] P. Priyanka, A. K. Meena, S. Varma, V. Kumar, and R. S. Sharma, "Impact of climate change on plant diseases and management strategies: A review," *International Journal of Chemical Studies*, vol. 8, no. 2, pp. 2968-2973, 2020. <https://doi.org/10.22271/chemi.2020.v8.i2at.9203>
- [143] K. Abdalla, M. Mutema, and T. Hill, "Soil and organic carbon losses from varying land uses: A global meta-analysis," *Geographical Research*, vol. 58, no. 2, pp. 167-185, 2020. <https://doi.org/10.1111/1745-5871.12389>
- [144] K. S. Rocci, J. M. Lavallee, C. E. Stewart, and M. F. Cotrufo, "Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis," *Science of the Total Environment*, vol. 793, p. 148569, 2021. <https://doi.org/10.1016/j.scitotenv.2021.148569>
- [145] F. Ferrini, A. Fini, J. Mori, and A. Gori, "Role of vegetation as a mitigating factor in the urban context," *Sustainability*, vol. 12, no. 10, p. 4247, 2020. <https://doi.org/10.3390/su12104247>
- [146] H. Adie and M. J. Lawes, "Solutions to fire and shade: Resprouting, growing tall and the origin of Eurasian temperate broadleaved forest," *Biological Reviews*, vol. 98, no. 2, pp. 643-661, 2023. <https://doi.org/10.1111/brv.12923>
- [147] S. Weeraratna, *Effects of land degradation. In Understanding Land Degradation: An Overview*. Cham: Springer International Publishing, 2022.
- [148] M. Qadir *et al.*, "Economics of salt-induced land degradation and restoration," *Natural Resources Forum*, vol. 38, no. 4, pp. 282-295, 2014.

- [149] G. Stirling, H. Hayden, T. Pattison, and M. Stirling, *Soil health, soil biology, soilborne diseases and sustainable agriculture: A guide*. Melbourne, VIC, Australia: CSIRO Publishing, 2016.
- [150] L. Hajji-Hedfi *et al.*, "Plant diseases: Pathogenicity and integrated management overview," *Microbial Biosystems*, vol. 9, no. 2, pp. 41-57, 2024.
- [151] U. De Corato, "Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review," *Rhizosphere*, vol. 13, p. 100192, 2020. <https://doi.org/10.1016/j.rhisph.2020.100192>
- [152] N. Bonilla, J. A. Gutiérrez-Barranquero, A. De Vicente, and F. M. Cazorla, "Enhancing soil quality and plant health through suppressive organic amendments," *Diversity*, vol. 4, no. 4, pp. 475-491, 2012. <https://doi.org/10.3390/d4040475>
- [153] M. A. Akber *et al.*, "Global distribution, traditional and modern detection, diagnostic, and management approaches of Rhizoctonia solani associated with legume crops," *Frontiers in Microbiology*, vol. 13, p. 1091288, 2023. <https://doi.org/10.3389/fmicb.2022.1091288>
- [154] P. Narayanasamy, *Soilborne microbial plant pathogens and disease management: Management of crop diseases*. Boca Raton, FL, USA: CRC Press, 2019.
- [155] S. Dutta, "Biointensive approaches: An eco-dynamic strategy for sustainable management of soil borne plant pathogens," *Journal of Mycopathological Research*, vol. 60, no. 4, pp. 487-506, 2022. <https://doi.org/10.57023/JMycR.60.4.2022.487>
- [156] J. S. Pasche, A. L. Thompson, and N. C. Gudmestad, "Quantification of field resistance to *Verticillium dahliae* in eight russet-skinned potato cultivars using real-time PCR," *American Journal of Potato Research*, vol. 90, no. 2, pp. 158-170, 2013. <https://doi.org/10.1007/s12230-012-9280-1>
- [157] J. E. Munyaneza and B. Bizimungu, "Management of potato pests and diseases in Africa." In *Insect Pests of Potato: Biology and Management*, 2nd ed., A. Alyokhin, S. I. Rondon, and Y. Gao, Eds., San Diego, CA, USA: Academic Press, 2022, pp. 407-426.
- [158] I. Sowik, B. Borkowska, and M. Markiewicz, "The activity of mycorrhizal symbiosis in suppressing *Verticillium* wilt in susceptible and tolerant strawberry (*Fragaria x ananassa* Duch.) genotypes," *Applied Soil Ecology*, vol. 101, pp. 152-164, 2016. <https://doi.org/10.1016/j.apsoil.2016.01.021>
- [159] M. Boro, S. Sannyasi, D. Chettri, and A. K. Verma, "Microorganisms in biological control strategies to manage microbial plant pathogens: A review," *Archives of Microbiology*, vol. 204, no. 11, p. 666, 2022. <https://doi.org/10.1007/s00203-022-03279-w>
- [160] H. Z. Ali and K. Nadarajah, "Evaluating the efficacy of *Trichoderma* isolates and *Bacillus subtilis* as biological control agents against *Rhizoctonia solani*," *Research Journal of Applied Sciences*, vol. 8, no. 1, pp. 72-81, 2013.
- [161] D. N. Suprapta, "Potential of microbial antagonists as biocontrol agents against plant fungal pathogens," *Journal of the International Society for Southeast Asian Agricultural Sciences*, vol. 18, no. 2, pp. 1-8, 2012.
- [162] M. Verma, S. K. Brar, R. D. Tyagi, R. Y. Surampalli, and J. R. Valero, "Antagonistic fungi, *Trichoderma* spp.: Panoply of biological control," *Biochemical Engineering Journal*, vol. 37, no. 1, pp. 1-20, 2007. <https://doi.org/10.1016/j.bej.2007.05.012>
- [163] M. Adnan *et al.*, "Plant defense against fungal pathogens by antagonistic fungi with *Trichoderma* in focus," *Microbial Pathogenesis*, vol. 129, pp. 7-18, 2019. <https://doi.org/10.1016/j.micpath.2019.01.042>
- [164] I. E. Elshahawy and N. M. Saied, "Reduced sclerotial viability of *Stromatinia cepivora* and control of white rot disease of onion and garlic by means of soil bio-solarization," *European Journal of Plant Pathology*, vol. 160, no. 3, pp. 519-540, 2021. <https://doi.org/10.1007/s10658-021-02260-5>
- [165] L. L. Bennett, E. Peterson, and J. Parke, *Determining the minimum treatment area and importance of soil moisture for effective soil solarization in nurseries (Gen. Tech. Rep. PSW-GTR-268)*. Albany, CA, USA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2020.
- [166] P. Sharma, P. P. Jambhulkar, M. Raja, and S. Javeria, *Pythium spp. on vegetable crops: Research progress and major challenges*. In M. Rai, K. A. Abd-Elsalam, & A. P. Ingle (Eds.), *Pythium: Diagnosis, Diseases and Management*. CRC Press, 2020.
- [167] A. K. H. Priyashantha and R. N. Attanayake, "Can anaerobic soil disinfection (ASD) be a game changer in tropical agriculture?," *Pathogens*, vol. 10, no. 2, p. 133, 2021. <https://doi.org/10.3390/pathogens10020133>
- [168] M. Hamal, "Evaluation of anaerobic soil disinfection for soilborne disease management and soil health improvement in Ohio high tunnel tomato production," Master's Thesis, The Ohio State University, Columbus, OH, USA, 2024.
- [169] R. B. Khadka, "Application of Nepalese *Trichoderma* spp. with anaerobic soil disinfection (ASD) to control soil-borne diseases and effect of ASD on weeds," Doctoral Dissertation, The Ohio State University, Columbus, OH, USA, 2021.
- [170] S. B. Thru Ppoyil, "Effectiveness of mustard short-cycle cover crops for management of *Phytophthora capsici* and *Fusarium* spp. in cucurbits," Doctoral Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2011.
- [171] J. Awrey, "Long-term cover crop impacts on processing tomato production: Fruit yield and quality, disease, and plant nitrogen content," Doctoral Dissertation, University of Guelph, Guelph, ON, Canada, 2021.
- [172] L. Patil, S. Thomse, P. Ghante, and S. Pawar, "Sustainable management of soil-borne plant diseases," *AgriCos e-newsletter*, vol. 2, no. 3, pp. 98-101, 2021.
- [173] F. Baysal-Gurel, B. M. McSpadden Gardener, and S. A. Miller, "Soil-borne disease management in organic vegetable production. eOrganic," Retrieved: <https://eorganic.org/node/7581>, 2012.
- [174] C. A. D. Santos, A. C. d. S. Abboud, and M. G. F. d. Carmo, "Biofumigation with species of the Brassicaceae family: A review," *Ciencia Rural*, vol. 51, no. 1, p. e20200440, 2020.
- [175] N. A.-K. Ahmed, G. Dechamp-Guillaume, and C. Seassau, "Biofumigation to protect oilseed crops: Focus on management of soilborne fungi of sunflower," *OCL*, vol. 27, p. 59, 2020. <https://doi.org/10.1051/ocl/2020052>
- [176] B. Kowalska, "Management of the soil-borne fungal pathogen—*Verticillium dahliae* Kleb. causing vascular wilt diseases," *Journal of Plant Pathology*, vol. 103, no. 4, pp. 1185-1194, 2021. <https://doi.org/10.1007/s42161-021-00937-8>
- [177] C. Vida, A. de Vicente, and F. M. Cazorla, "The role of organic amendments to soil for crop protection: Induction of suppression of soilborne pathogens," *Annals of Applied Biology*, vol. 176, no. 1, pp. 1-15, 2020. <https://doi.org/10.1111/aab.12555>
- [178] M. L. Gullino, A. Garibaldi, A. Gamliel, and J. Katan, "Soil disinfection: From soil treatment to soil and plant health," *Plant Disease*, vol. 106, no. 6, pp. 1541-1554, 2022. <https://doi.org/10.1094/PDIS-09-21-2023-FE>
- [179] C. M. Marik, "Effect of anaerobic soil disinfection on *Salmonella* concentration using different soil amendments," Doctoral Dissertation, Virginia Tech, Blacksburg, VA, USA, 2020.
- [180] L. Vecchia, F. Di Gioia, A. Ferrante, J. C. Hong, C. White, and E. N. Rosskopf, "Integrating cover crops as a source of carbon for anaerobic soil disinfection," *Agronomy*, vol. 10, no. 10, p. 1614, 2020. <https://doi.org/10.3390/agronomy10101614>
- [181] F. Di Gioia *et al.*, "Advancing organic amendment-based soil management approaches: A paradigm shift from soil disinfection to nourishing soil health," *ISHS Acta Horticulturae 1410: X International Symposium on Soil and Substrate Disinfection*. International Society for Horticultural Science, 2024.