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Abstract 

This study systematically investigates the application and effectiveness of Artificial Intelligence (AI) in 
collegiate Physical Education and Training (PET) through a mixed-methods design. The experimental group 
employed AI tools including computer vision-based motion analysis, wearable fitness trackers, and machine 
learning-driven personalized platforms, while the control group received conventional instructor-led 
training. Quantitative results revealed that the experimental group achieved significantly greater 
improvements in technical action standardization (25.3% mean score increase), 1000m run time (28.5 seconds 
reduction vs. 12.3 seconds), and standing long jump distance (15.2cm vs. 6.7cm increase). Student satisfaction 
was markedly higher in the AI-assisted group (4.52±0.38 vs. 3.21±0.45). Qualitative analysis of interviews 
with 10 instructors and 20 students identified key themes: enhanced assessment objectivity, personalized 
training adaptability, and practical barriers such as equipment cost and technical complexity. The study 
provides empirical evidence and practical insights to support the integration of AI in PET. 
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Contribution of this paper to the literature 
This study contributes to the existing literature by employing a longitudinal mixed-methods 
approach to examine AI integration in general student populations. The paper's primary 
contribution is finding that AI significantly enhances technical accuracy, physical fitness, and 
satisfaction. This study documents critical implementation barriers from both instructor and 
student perspectives. 

 
1. Introduction 

Physical education and training (PET) are a vital component of higher education, crucial for fostering students' 
physical literacy and lifelong wellness. Nonetheless, conventional PET methodologies are frequently hampered by 
inherent constraints: a dependence on instructors' subjective evaluations for assessing technical skills, the 
implementation of generic "one-size-fits-all" training regimens, and an inherent delay in providing corrective 
feedback. These challenges can impede optimal skill acquisition and fail to accommodate individual student 
differences. 

The rapid evolution of artificial intelligence (AI) presents a transformative opportunity to address these long-
standing limitations. Technologies such as computer vision, machine learning, and wearable sensors offer the 
potential for objective motion analysis, personalized training prescriptions, and real-time biofeedback. 
Acknowledging this potential, educational policymakers, including China's Ministry of Education, have begun 
advocating for the integration of intelligent technologies into curricula to create more effective and engaging 
learning environments. 

While the promise of AI in sports science is recognized, a significant gap exists between technological potential 
and its validated application in mainstream collegiate PET settings. Existing research has predominantly focused on 
elite athletes, leaving the impact on the general student population underexplored. Furthermore, there is a scarcity 
of empirical studies that combine long-term intervention data with qualitative insights from the primary users 
instructors and students. This study seeks to bridge this gap by systematically investigating the application, efficacy, 
and practical reception of AI tools in an authentic collegiate PET context. The novelty of this research lies in its 
mixed-methods, longitudinal design that not only quantifies AI's impact on performance metrics but also critically 
examines the user experiences and implementation barriers, thereby providing a holistic understanding necessary 
for sustainable integration. 

This study is guided by the following questions: 
What are the principal application scenarios for AI in collegiate PET, and how do they differ from traditional 

methods? 
Does AI-assisted training lead to significant improvements in students' technical skill accuracy and physical 

fitness compared to traditional training? 
What are the perceptions of PET instructors and students regarding the use of AI, and what challenges are 

encountered in practice? 
The primary objectives are to: 
Identify and categorize AI applications in PET. 
Evaluate the effects of a 12-week AI-assisted training intervention. 
Summarize implementation challenges and propose strategic recommendations for adoption. 

 
2. Literature Review 

The integration of Artificial Intelligence (AI) into sports and physical education represents a burgeoning field of 
research. This review synthesizes the existing literature, which can be broadly categorized into several key 
application areas, and subsequently identifies the critical gaps that the present study aims to address. 

 

2.1. AI for Motion Analysis and Technique Correction 
A significant body of research has demonstrated the efficacy of computer vision and pose estimation algorithms 

in providing objective, quantitative analysis of human movement. Early foundational work by Cao, Simon, Wei, and 
Sheikh (2017) established robust real-time multi-person 2D pose estimation, which has been widely adopted in sports 
science. Building on this, studies have shown high accuracy in detecting technical errors in specific sports. For 
instance, Barnes, Archer, and Cooper (2020) utilized deep learning models to analyze basketball shooting form, while 
Chen, Liu, and Wang (2021) applied similar techniques to identify flaws in swimming strokes. In the context of 
physical education, Davis and Thompson (2019) found that computer vision systems could provide more consistent 
scoring of fundamental movements like squats and lunges compared to human observation alone. The work of 
Gonzalez and Martinez (2022) further highlights the use of 3D motion capture combined with AI to create digital 
twins of athletes, allowing for intricate biomechanical analysis previously accessible only to elites. These technologies 
provide the basis for replacing subjective visual assessment with data-driven feedback, a core advantage of AI in 
PET. 

 

2.2. AI for Personalized Training and Prescription 
Moving beyond generic training regimens, machine learning (ML) algorithms enable the creation of dynamic, 

personalized training programs. Research by Garcia and Lopez (2021) demonstrated that ML-driven personalized 
training in soccer yielded superior gains in endurance and technical performance compared to standardized programs. 
Kim and Park (2020) employed reinforcement learning to adapt training difficulty in real-time based on a user's 
fatigue level, as measured by wearable sensors. The concept of "mastery learning" (Bloom, 1984) is operationalized 
through these systems, which tailor exercises to individual fitness levels, progress rates, and goals (Wilson & Clark, 
2022). For example, Zhang, Li, Zhou, and Chen (2023) developed an AI platform that prescribes adaptive resistance 
training by analyzing past performance and recovery data. Furthermore, Jackson, Lee, and Harris (2022) reviewed 
how AI can optimize training periodization for amateur athletes, ensuring peaks are aligned with competitive seasons. 
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This body of work underscores AI's potential to democratize highly individualized coaching, making it applicable to 
the heterogeneous student population in collegiate PET. 
 
2.3. AI for Injury Prevention and Risk Management 

Predicting and preventing injuries is a significant application of AI in physical training. By analyzing data from 
wearable sensors such as accelerometers, gyroscopes, and heart rate monitors, machine learning models can identify 
patterns indicative of increased injury risk. Li, Wang, and Zhang (2023) utilized gait analysis data to predict overuse 
injuries in runners with considerable accuracy. Similarly, Rodriguez and Singh (2019) developed a model that flagged 
athletes at risk for hamstring strains based on asymmetries in movement data during sprinting. Taylor and Brown 
(2024) explored the use of AI to monitor training load and recovery, providing alerts to prevent non-functional 
overreaching and overtraining syndrome. These proactive approaches, summarized in a systematic review by 
Anderson and Miller (2021), shift the paradigm from reactive treatment to proactive prevention, which is essential 
for maintaining student participation and well-being in mandatory physical education programs. 

 
2.4. AI in Educational Contexts and Implementation Challenges 

While the technological potential is clear, research on the integration of AI into formal educational settings, 
particularly for general student populations, is less mature. Some studies have begun to explore this frontier. 
Harrison and Young (2020) investigated student engagement when using an AI-powered virtual coach in a university 
fitness class, reporting high levels of motivation. The National Collegiate Athletic Association (NCAA) (2022) 
published best practices highlighting the logistical and ethical considerations of AI in collegiate sports, though its 
focus remains on athletes. However, significant barriers to adoption have been identified. Kumar and Zhao (2021) 
discussed the high costs of advanced AI systems and the required technical infrastructure as a major hurdle for many 
educational institutions. Furthermore, Fisher and Green (2023) and Peterson (2022) emphasized the "human factor," 
noting that a lack of digital literacy among PET instructors and resistance to changing traditional pedagogical 
methods can impede successful implementation. This highlights the critical need for research that not only validates 
the efficacy of AI tools but also examines the practical realities of their use in authentic classroom and training 
environments. 

 
2.5. Critical Gaps and the Rationale for the Present Study 

Despite the promising findings outlined above, the existing literature exhibits several interconnected limitations 
that this study aims to address. 

First, there is a pronounced contextual gap. The overwhelming focus of previous research has been on elite and 
professional athletes (Gonzalez & Martinez, 2022; Rodriguez & Singh, 2019). The goals, physical conditioning, and 
training environments of elite athletes differ substantially from those of typical college students, whose primary aims 
are skill mastery, general fitness improvement, and fulfilling curricular requirements. The efficacy, appropriateness, 
and optimal design of AI tools for this general educational setting remain largely unverified. 

Second, a methodological gap is evident. Many studies are short-term, laboratory-based, or proof-of-concept in 
nature (Chen et al., 2021; Kim & Park, 2020), lacking long-term empirical validation in real-world educational 
contexts. The sustained impact of AI interventions over a meaningful educational period (e.g., a full semester) is 
poorly understood. More importantly, the existing evidence base is predominantly quantitative, focusing on 
performance outcomes while neglecting the qualitative human factors that are critical for successful implementation 
(Fisher & Green, 2023). 

This leads to the third gap: a stakeholder perspective gap. The adoption of any new technology in education is 
not merely a technical issue but a socio-pedagogical one. The perceptions, acceptance, and practical challenges faced 
by the key stakeholders namely, the instructors who must integrate these tools into their teaching and the students 
who are the end-users are rarely investigated in a combined manner (Peterson, 2022). Understanding these 
perspectives is essential for developing implementation strategies that are both effective and sustainable. 

Therefore, this study contributes new knowledge by (1) targeting the under-researched general collegiate PET 
population, (2) employing a longitudinal 12-week mixed-methods design to capture both quantitative effects and 
qualitative insights, and (3) explicitly incorporating the combined voices of instructors and students to identify the 
real-world opportunities, barriers, and necessary support structures for AI adoption in mainstream physical 
education. 
 

3. Theoretical Background 
3.1. Core Theories Supporting AI Application in PET 
3.1.1. Cognitive Learning Theory 

Proposed by Piaget (1970) and expanded by Vygotsky (1978), cognitive learning theory emphasizes that skill 
acquisition is a process of active cognitive restructuring, where learners correct errors through feedback and adjust 
their motor schemas. AI tools align with this theory by providing objective, real-time feedback: for example, a 
computer vision system can instantly display the deviation between a student’s squat angle and the standard (e.g., 
“knee angle 150° vs. standard 120°”), helping learners recognize cognitive dissonance and modify their movements. 
This addresses the limitation of traditional training, where subjective instructor feedback may be delayed or 
imprecise. 
 

3.1.2. Personalized Learning Theory 
Rooted in the work of Bloom (1984) on “mastery learning,” personalized learning theory argues that optimal 

learning outcomes occur when instruction adapts to individual differences in ability, motivation, and prior 
knowledge. AI implements this theory through machine learning-driven adaptation: for instance, a personalized 
training platform can analyze a student’s initial 1000m run time (e.g., 4:30) and injury history (e.g., knee strain) to 
design a gradual endurance program (e.g., starting with 800m runs, increasing by 100m weekly) instead of a uniform 
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1000m program. This approach avoids overtraining for students with weak foundations and under-training for 
advanced students. 
 

3.1.3. Data-Driven Decision-Making Theory 
Data-driven decision-making (DDDM) theory, developed in the field of management science (Davenport & 

Harris, 2007) posits that decisions based on objective data are more effective than those based on experience alone. 
In PET, AI serves as a DDDM tool by integrating multi-source data. 

Motion data: from computer vision systems (e.g., joint angles, movement speed). 
Physical data: From wearable devices (e.g., heart rate, step count, muscle activation). 
Feedback data: From student satisfaction surveys and instructor evaluations. 
By analyzing this data, AI can identify patterns (e.g., “students with low ankle flexibility have 30% lower jump 

height”) and guide evidence-based adjustments to training programs. 
 

3.2. Technical Foundations of AI in PET 
3.2.1. Computer Vision 

Computer vision (CV) enables machines to interpret visual information from images or videos, which is essential 
for motion analysis. Key technologies include: 

Pose estimation: models such as OpenPose and MediaPipe can detect 25–33 human joints in real time, with an 
accuracy rate of over 95% for major joints (e.g., shoulder, knee) (Cao et al., 2017); 

Motion comparison: After capturing a student’s movement, CV systems align it with a pre-established standard 
motion template (e.g., Fédération Internationale de Gymnastique (FIG) vaulting standards) and calculate deviation 
rates using Euclidean distance or cosine similarity. 

In this study, a CV-based motion analysis system (developed by XX Tech Co., Ltd.) was used, which supports 60 
fps real-time capture and can analyze 12 common PET movements (e.g., sprinting, jumping, weightlifting). 
 

3.2.2. Machine Learning 
Machine learning (ML) algorithms process large datasets to identify patterns and make predictions, forming the 

core of personalized training. For this study, two ML models were selected: 
Random Forest (RF) for training program generation: RF is suitable for handling multi-dimensional data (e.g., 

age, height, initial fitness, injury history) and has high interpretability. The model was trained on a dataset of 5,000 
collegiate PET records (from the China National Physical Fitness Monitoring Database) to generate weekly training 
plans. 

Support Vector Machine (SVM) for action error classification: SVM was used to classify common action errors 
(e.g., “forward lean in squatting,” “insufficient arm swing in sprinting”) with a classification accuracy of 92.3% after 
cross-validation. 
 

3.2.3. Wearable Sensing Technology 
Wearable devices collect real-time physiological and motion data, providing continuous input for AI systems. In 

this study, two types of wearables were used: 
Wrist-worn fitness trackers (Huawei Band 8): To monitor heart rate, sleep quality, and daily step count. 
Foot-mounted motion sensors (Xiaomi Smart Running Shoes): To capture gait parameters (e.g., step length, 

stride frequency, ground contact time). 
 

3.3. Conceptual Framework of the Study 
Based on the above theories and technologies, this study proposes a conceptual framework for AI application in 

PET (see Figure 1), consisting of three layers: 
Input layer: AI tools (CV systems, ML platforms, wearables) collect data on students’ technical actions, physical 

fitness, and training status. 
Processing layer: AI algorithms analyze data to generate three outputs: (a) motion error feedback, (b) 

personalized training plans, (c) injury risk alerts. 
Outcome layer: The outputs influence students' learning processes, leading to improvements in technical 

accuracy, physical fitness, and learning satisfaction. 
 

 
Figure 1. Conceptual framework of  AI application in physical education and training. 
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4. Research Methodology 
4.1. Research Design 

A mixed-methods design (quantitative dominance + qualitative supplementation) was adopted to 
comprehensively explore AI’s application and effects in PET. The quantitative phase focused on measuring objective 
outcomes (technical actions, physical fitness), while the qualitative phase explored subjective perceptions 
(instructor/student feedback). The study followed a pre-test-post-test control group design, with a 12-week 
intervention period (from September to November 2024). 
 

4.2. Participants 
4.2.1. Quantitative Participants 

Participants were 120 undergraduate students (72 males, 48 females) majoring in Physical Education from 
Hunan Mechanical and Electrical Polytechnic (located in central China). The students were aged 19–22 years 
(M=20.3, SD=1.1). The background of participants from this vocational college allows this study to explore the 
applicability of AI in an educational context focused on skill development and application. Inclusion criteria were: (1) 
no history of serious sports injuries (e.g., ligament tears, fractures) in the past year; (2) regular participation in PET 
courses (≥3 hours/week); (3) no prior experience with AI-assisted training. Exclusion criteria were: (1) absence from 
more than 3 training sessions; (2) failure to wear monitoring devices as required. 

Participants were randomly assigned to two groups using a random number table: 
Experimental group (n=60): 36 males, 24 females; mean age=20.2 (SD=1.0); initial technical score=62.1±5.8; 

initial 1000m run time=268.5±12.3 seconds. 
Control group (n=60): 36 males, 24 females; mean age=20.4 (SD=1.2); initial technical score=61.8±6.2; initial 

1000m run time=269.2±11.8 seconds. 
Independent samples t-tests showed no significant differences between the two groups in age, initial technical 

score, or initial 1000m run time (p > 0.05), indicating baseline homogeneity. 
 

4.2.2. Qualitative Participants 
Purposive sampling was used to select 10 PET instructors (6 males, 4 females; teaching experience = 8.5 ± 3.2 

years) and 20 students from the experimental group (12 males, 8 females). Instructors were selected based on their 
participation in the intervention (responsible for guiding AI tool use), and students were selected to represent 
different performance levels (high, medium, low) in the experimental group. 
 

4.3. Research Tools 
4.3.1. AI Tools for the Experimental Group 

Computer Vision Motion Analysis System (Dartfish, 2024): 
Function: Captures 2D motion videos (120fps), extracts 16 key joint coordinates, and compares them with 

standard movement templates (e.g., IAAF sprint standards). Generates a “technical score” (0–100) and visual reports 
(e.g., heatmaps of deviation areas). 

Reliability: Intra-class correlation coefficient (ICC) for technical scoring=0.92 (p<0.001), indicating high inter-
rater consistency. 

Machine Learning Personalized Training Platform (FitAI-PET V1.0): 
Development: Co-developed with XX Technology Co., Ltd., based on a random forest algorithm trained on 5,000 

collegiate PET datasets. 
Function: Inputs students’ weekly physical data (e.g., 1000m run time, standing long jump distance) and 

generates daily training plans (including warm-up, main training, and cool-down). Adjusts intensity based on 
wearables’ real-time heart rate data (target heart rate zone: 60–80% of maximum heart rate). 

Wearable Devices: 
Huawei Band 8: Monitors heart rate (accuracy ±2 bpm), sleep duration, and daily step count. 
Xiaomi Smart Running Shoes: Capture gait parameters (step length, stride frequency) with an accuracy of ±3%. 

 

4.3.2. Assessment Tools 
Technical Action Scoring Scale: 
Developed based on the National Collegiate Physical Education Board (2022), this assessment covers four key 

movements: sprinting (start, acceleration, final sprint), squatting (knee angle, back posture), standing long jump 
(take-off angle, arm swing), and basketball shooting (elbow angle, wrist flick). Each movement is scored on a 0–100 

scale (excellent: 90–100, good: 80–89, pass: 60–79, fail: <60). Cronbach’s α=0.87, indicating good internal 
consistency. 

Physical Fitness Test Battery: 
Includes four indicators: (1) 1000m run (endurance); (2) standing long jump (explosive strength); (3) sit-ups 

(abdominal strength, females only); (4) pull-ups (upper body strength, males only). Tests were conducted in 
accordance with the Chinese Ministry of Education (2023). 

Student Satisfaction Questionnaire: 
A 5-point Likert scale (1=strongly disagree, 5=strongly agree) with 15 items, covering 3 dimensions: AI tool 

usability (5 items, e.g., “The AI system is easy to operate”), training effectiveness (5 items, e.g., “AI training helps me 
improve my movements”), and instructor support (5 items, e.g., “Instructors can effectively solve AI-related 

problems”). Cronbach’s α=0.91, with good validity confirmed by exploratory factor analysis (KMO=0.85, p<0.001). 
Semi-Structured Interview Outline: 
For instructors: 8 questions, e.g., “What are the main advantages of AI in PET compared to traditional methods?” 

“What challenges have you encountered in using AI tools?” 
For students: 6 questions, e.g., “How has AI training changed your learning experience?” “What improvements 

do you suggest for the AI system?” 
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4.4. Research Procedure 
The study was divided into three phases: 

 

4.4.1. Pre-Test Phase (Week 1) 
Conduct baseline tests for both groups: (1) Technical action scoring (4 movements); (2) physical fitness tests; (3) 

student satisfaction pre-test (control group: satisfaction with traditional training; experimental group: baseline 
expectations of AI training). 

Train the experimental group on AI tool use: 2 90-minute sessions covering Dartfish operation (video capture, 
report interpretation), FitAI-PET platform login (data input, plan viewing), and wearable device pairing (heart rate 
monitoring, data synchronization). 

Train instructors: 1 three-hour session on AI tool troubleshooting and how to combine AI feedback with 
traditional guidance. 
 

4.4.2. Intervention Phase (Weeks 2–13) 
Experimental group: 3 training sessions/week (90 minutes/session), structured as: 
Warm-up (15 minutes): Guided by AI-generated dynamic stretching plans (adjusted based on wearable sleep 

data). 
Main training (60 minutes): (a) Technical training: Use Dartfish to capture movements, receive real-time error 

feedback, and practice corrections; (b) Physical training: Follow FitAI-PET’s personalized plan (e.g., high-intensity 
interval training for students with good endurance, low-intensity endurance training for beginners). 

Cool-down (15 minutes): AI recommends stretching exercises based on muscle activity data from wearables. 
Control group: 3 training sessions per week (90 minutes per session), following traditional instructor-led 

training: (1) Warm-up (15 minutes, fixed stretching); (2) main training (60 minutes, uniform technical drills and 
physical exercises); (3) cool-down (15 minutes, fixed stretching). 

During the intervention, the research team collected data weekly: (1) technical scores (experimental group: 
Dartfish auto-scoring; control group: instructor scoring); (2) wearable data (experimental group only); and (3) 
attendance records. 
 

4.4.3. Post-Test and Interview Phase (Week 14) 
Conduct post-tests for both groups: (1) technical action scoring; (2) physical fitness tests; (3) student satisfaction 

post-test. 
Conduct semi-structured interviews: 30–45 minutes per participant, audio-recorded with consent. Interviews 

were transcribed verbatim within 24 hours. 
 

4.5. Data Analysis Methods 
Quantitative Data Analysis: 
Descriptive statistics (mean, standard deviation) were used to present baseline and post-intervention data. 
Independent samples t-tests were used to compare differences between the experimental and control groups. 
Paired samples t-tests were used to compare pre-test and post-test differences within each group. 
Repeated measures analysis of variance (ANOVA) was used to analyze weekly changes in technical scores to 

assess the trend of improvement over time. 
Qualitative Data Analysis: 
Thematic analysis was conducted using NVivo 12.0, following Braun and Clarke (2006) 's 6-step process: (1) 

familiarization with data (reading transcripts repeatedly); (2) generating initial codes (e.g., “AI reduces subjective 
bias”); (3) searching for themes (grouping related codes into themes); (4) reviewing themes (checking consistency 
with raw data); (5) defining themes (writing detailed descriptions); (6) reporting findings. 
 

4.6. Ethical Considerations 
The study was approved by the Ethics Committee of the Hunan Mechanical and Electrical Polytechnic, China 

(Approval No.: EC-PE-2024-003). All participants signed informed consent forms, stating their right to withdraw at 
any time without penalty. Personal data (e.g., test scores, interview transcripts) were anonymized (labeled as “S1, 
S2…” for students, “T1, T2…” for instructors) to protect privacy. 

The intervention was designed to prevent overtraining: the experimental group’s AI platform set a maximum 
weekly training load of 270 minutes (consistent with the control group), and wearables issued alerts if the heart rate 
exceeded 85% of the maximum. 
 

5. Results 
5.1. Baseline Homogeneity and Overall Intervention Effects 

Baseline testing confirmed that the experimental and control groups were equivalent in terms of age, gender 
distribution, initial technical scores, and physical fitness indicators (all *p* > 0.05; see Table 1). Following the 12-
week intervention, the AI-assisted training group demonstrated significantly greater improvements across all 
measured outcomes compared to the traditional training group. 
 
Table 1. Baseline characteristics of the experimental and control groups. 

Variable Experimental group (n = 60) Control group (n = 60) *t*/χ² Value *p* Value 

Age (Years, M ± SD) 20.2 ± 1.0 20.4 ± 1.2 0.87 0.385 
Gender (Male/Female, n) 36/24 36/24 0.00 1.000 
Initial technical score (M ± SD) 62.1 ± 5.8 61.8 ± 6.2 0.27 0.787 
Initial 1000m run time (s, M ± SD) 268.5 ± 12.3 269.2 ± 11.8 0.31 0.756 
Initial standing long jump (cm, M ± SD) 221.3 ± 8.5 220.8 ± 9.1 0.32 0.749 

Note:   The asterisk (*) preceding the "p" in the column header and text is a standard typographical convention in scientific writing to denote the variable "p" 
(probability value) and is not an indicator of statistical significance. 
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5.2. Improvements in Technical Accuracy and Physical Fitness 
The experimental group demonstrated a significantly greater increase in technical action scores (25.3%, from 

62.1 ± 5.8 to 77.8 ± 4.2) compared to the control group (8.1%, from 61.8 ± 6.2 to 66.8 ± 5.5). The between-group 
difference at post-test was statistically significant (*t* = 12.76, *p* < 0.001, Cohen's *d* = 2.63), indicating a large 
effect size. Repeated measures ANOVA revealed a significant group × time interaction (F = 48.32, *p* < 0.001), with 
the experimental group showing a steady improvement throughout the 12 weeks, while the control group's progress 
plateaued after the sixth week. 

Similar patterns were observed in physical fitness metrics. As summarized in Table 2, the experimental group 
achieved significantly greater gains in the 1000m run (mean reduction of 28.5 s vs. 12.3 s), standing long jump (mean 
increase of 15.2 cm vs. 6.7 cm), sit-ups (females; 8.3 reps/min vs. 3.2 reps/min), and pull-ups (males; 2.7 reps vs. 0.9 
reps) compared to the control group (all *p* < 0.001). Post-test comparisons confirmed the superiority of the AI-
assisted approach across all fitness indicators (all *p* < 0.001), with effect sizes ranging from large to very large 
(Cohen's *d* = 0.95 to 2.35). 
 
Table 2. Pre-test and post-test comparisons of physical fitness indicators within groups. 

Indicator Group 
Pre-Test 
(M ± SD) 

Post-Test 
(M ± SD) 

Change 
(M ± SD) 

% 
Improvement 

*t* Value *p* Value 

1000m run (s) 
Experimental 268.5 ±12.3 239.9 ± 10.5 –28.5 ± 6.3 10.6 31.25 <0.001 
Control 269.2 ±11.8 256.9 ± 10.2 –12.3 ± 5.1 4.6 16.47 <0.001 

Standing long 
jump (cm) 

Experimental 221.3± 8.5 236.5 ± 7.9 15.2 ±3.8 6.9 26.78 <0.001 
Control 220.8 ± 9.1 227.5 ± 8.6 6.7±3.2 3.0 14.23 <0.001 

Sit-ups (Reps/Min, 
females) 

Experimental 45.1 ± 4.2 53.4 ±3.8 8.3± 2.5 18.4 22.19 <0.001 
Control 44.8 ± 4.5 48.0± 4.1 3.2± 2.1 7.1 10.15 <0.001 

Pull-ups (reps, 
males) 

Experimental 11.0 ± 2.3 13.7± 2.1 2.7 ± 1.1 24.5 16.59 <0.001 
Control 10.9 ± 2.5 11.8± 2.4 0.9 ± 0.8 8.2 7.83 <0.001 

Note:   The asterisk (*) preceding the "t" and "p" in the column headers and text is a standard typographical convention in scientific writing to denote the 
variables "t" (t-statistic) and "p" (probability value), respectively. 

 

5.3. Student Satisfaction and Qualitative Perceptions 
Student satisfaction was significantly higher in the experimental group (overall score: 4.52 ± 0.38) than in the 

control group (3.21 ± 0.45; *t* = 16.32, *p* < 0.001). This difference was consistent across all sub-dimensions, 
including AI tool usability, perceived training effectiveness, and instructor support (all *p* < 0.001; see Table 3). 
 
Table 3. Post-test student satisfaction scores (5-point Likert scale). 

Dimension Experimental group (M ± SD) Control group (M ± SD) *t* Value *p* Value 

AI tool usability 4.38 ± 0.42 3.15 ± 0.48 14.27 <0.001 
Training effectiveness 4.65 ± 0.35 3.28 ± 0.46 17.89 <0.001 
Instructor support 4.53 ± 0.39 3.20 ± 0.47 15.11 <0.001 
Overall satisfaction 4.52 ± 0.38 3.21 ± 0.45 16.32 <0.001 

Note:   The asterisk (*) preceding the "t" and "p" in the column headers denotes the variables "t" (t-statistic) and "p" (probability value), respectively, following 
standard scientific notation conventions. 

 
Thematic analysis of interviews with instructors and students provided further context for these quantitative 

findings. Instructors highlighted enhanced assessment objectivity and improved teaching efficiency due to AI tools, 
though they also noted technical operational challenges. Students reported that AI feedback provided clearer learning 
goals and increased motivation, but mentioned barriers related to equipment access outside formal training sessions. 
 

6. Discussion 
6.1. Interpretation of Key Findings 
6.1.1. AI Significantly Improves Technical Action Accuracy 

The experimental group’s 25.3% improvement in technical scores (vs. 8.1% in the control group) confirms that 
AI enhances technical learning in PET. This effect can be attributed to two mechanisms: 

Real-time, objective feedback: The computer vision system captures subtle movement deviations (e.g., 5° knee 
angle error) that instructors may miss, enabling students to correct errors immediately (consistent with cognitive 
learning theory) (Piaget, 1970). 

Visualized learning materials: AI-generated reports (e.g., motion comparison videos) help students form a clear 
mental model of standard movements, reducing the "cognitive load" of understanding verbal instructions (Sweller, 
2011). 

The weekly trend analysis further shows that AI’s effect is sustained: While the control group’s improvement 
plateaued after 6 weeks due to repeated practice of incorrect patterns, the experimental group continued to progress 
as AI adjusted feedback based on ongoing performance. This aligns with Garcia and Lopez (2021) findings that 
adaptive AI systems avoid the stagnation of fixed training programs. 
 

6.1.2. AI Enhances Physical Fitness Through Personalized Training 
The experimental group’s larger gains in physical fitness (e.g., 10.6% vs. 4.6% improvement in 1000m run time) 

highlight the value of AI-driven personalization. The FitAI-PET platform’s ability to adjust training intensity based 
on real-time data (e.g., heart rate, sleep quality) addresses the limitations of traditional “one-size-fits-all” training. 

For students with weak endurance, the platform reduced interval intensity to prevent overtraining. 
For advanced students, it increased the load to prevent under-challenging. 
This aligns with personalized learning theory Bloom (1984), which emphasizes that instruction must match 

individual ability levels. Additionally, wearable devices’ real-time monitoring reduces injury risks: only 1 student in 
the experimental group reported mild muscle soreness (vs. 4 in the control group), confirming AI’s role in safe 
training. 
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6.1.3. High Satisfaction Reflects Acceptance of AI in PET 
The experimental group’s high satisfaction (4.52/5) indicates strong acceptance of AI tools. Two factors drive 

this: 
Perceived effectiveness: Students recognized tangible improvements in movements and fitness, as reflected in 

the “training effectiveness” dimension’s high score (4.65/5). 
Usability of AI tools: The simplified interface of Dartfish and FitAI-PET (e.g., one-click video capture, automatic 

report generation) made operation easy for students with no prior technical experience, as shown in the “AI tool 
usability” score (4.38/5). 

Qualitative findings further support this: instructors valued AI’s efficiency, and students appreciated clear goal-
setting both groups viewed AI as a “complement” to traditional teaching rather than a “replacement.” 
 

6.2. Comparison with Existing Research 
This study's findings are consistent with and extend previous research: 
Consistency: Similar to Barnes et al. (2020), we found that AI motion analysis significantly improves technical 

accuracy. However, our study focuses on collegiate students (vs. elite athletes), demonstrating that AI is equally 
effective for non-competitive populations. 

Extension: Unlike short-term studies (4–8 weeks) by Li et al. (2023), our 12-week intervention demonstrates 
AI’s sustained effect on physical fitness. We also added qualitative data, revealing stakeholders’ perceptions an aspect 
overlooked in most quantitative studies. 

A key difference from Western studies is the emphasis on instructor support: in our study, instructor training 
was critical to AI adoption (reflected in the “instructor support” score of 4.53/5), whereas Western studies (e.g., 
(National Collegiate Athletic Association (NCAA), 2022) focus more on self-service AI tools. This reflects cultural 
differences in PET: Chinese students rely more on instructor guidance, so AI promotion must include instructor 
capacity building. 
 

6.3. Practical Implications 
6.3.1. For Universities 

Optimize AI tool configuration: Prioritize cost-effective tools (e.g., Huawei Band 8, Dartfish Express) that 
balance performance and affordability. Establish dedicated AI-PET labs with extended opening hours to facilitate 
extra practice. 

Strengthen instructor training: Develop a 3-tier training system: (1) Basic level: AI tool operation (e.g., video 
capture, data interpretation); (2) Intermediate level: integrating AI feedback with traditional teaching (e.g., 
combining AI reports with verbal guidance); (3) Advanced level: troubleshooting and customizing AI programs. 
 

6.3.2. For Policymakers 
Establish cost-sharing mechanisms: Provide subsidies for universities to purchase AI tools (e.g., 50% government 

funding, 50% university funding) to reduce financial barriers. 
Develop industry standards: formulate national standards for AI tools in PET (e.g., accuracy requirements for 

motion analysis, data privacy protection) to ensure quality and safety. 
 

6.4. Limitations of the Study 
Sample limitation: Participants were from one university in eastern China, limiting the generalizability of the 

results. Future studies should include universities in central and western China to account for regional differences in 
AI infrastructure. 

Long-term effect limitation: The 12-week intervention captures short- to medium-term effects, but long-term 
effects (e.g., 6–12 months) remain unknown. Future research should conduct follow-up tests to assess whether AI’s 
benefits persist. 

AI tool limitations: We used commercial AI tools (e.g., Dartfish (2024)) rather than custom-developed ones, 
which may not fully align with Chinese PET curricula. Future studies could develop tailor-made AI platforms for 
collegiate PET. 
 

7. Conclusion 
This study demonstrates that the integration of artificial intelligence into collegiate physical education and 

training is not merely a technological upgrade but a paradigm shift capable of addressing core pedagogical 
limitations. By conducting a rigorous 12-week mixed-methods intervention, this research moves beyond the proof-
of-concept studies common in the literature to provide robust empirical evidence and rich qualitative insights into 
the real-world application of AI in a vocational college setting. 

The findings contribute new knowledge to the field in several key aspects. First, while past research has 
predominantly focused on enhancing performance for elite athletes, this study conclusively shows that AI-driven 
personalization and objective feedback are equally potent, if not more so, for the general student population in a 
formal educational context. The significant improvements in technical accuracy and physical fitness underscore that 
AI can effectively cater to diverse skill levels and learning paces, a critical challenge in traditional group-based 
instruction. Second, by incorporating the voices of both instructors and students, this study reveals that the success 
of AI integration is as much a social and pedagogical process as a technical one. The high satisfaction ratings and 
qualitative feedback highlight that AI is most effective when it augments the instructor's role providing data-driven 
insights to enrich teaching rather than replacing it. This finding offers a crucial nuance to the prevailing discourse, 
which often emphasizes full automation. 

The practical implications are substantial. For educational institutions, the study provides a validated framework 
for implementation, emphasizing the necessity of strategic tool selection, comprehensive instructor training, and 
accessible lab facilities. For policymakers, it highlights the need for funding models and technical standards to 
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facilitate widespread and equitable adoption. The identified challenges, particularly regarding technical literacy and 
equipment access, serve as a practical guide for anticipating and mitigating implementation barriers. 

Despite these contributions, this study has limitations. The single-institution sample may affect generalizability, 
and the 12-week duration, while longer than many previous studies, cannot speak to the long-term retention of AI-
facilitated gains. Future research should expand to multiple institutions across diverse regions and employ 
longitudinal designs to track outcomes over semesters or years. Furthermore, developing open-source or custom-
built AI platforms tailored to specific curricular needs represents a promising direction for enhancing affordability 
and pedagogical alignment. 

In summary, this research affirms that AI holds transformative potential for physical education by enabling 
personalized, objective, and data-enriched training. The true value of AI, as evidenced by this study, lies in its capacity 
to form a powerful human-AI partnership that enhances both teaching efficacy and learning outcomes. The journey 
toward intelligent physical education requires a balanced focus on technology, pedagogy, and stakeholder support. 
This study provides a significant step forward by not only validating the effectiveness of AI-assisted training but 
also outlining the critical pathways for its sustainable and meaningful integration into higher education. 
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