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Panel methods are the numerical schemes for solving linear, inviscid, irrotational flow fields about 

arbitrary bodies at subsonic free-stream Mach numbers. The basic procedure is to discretize the body 

in terms of singularity distribution on the body surface then satisfy the necessary boundary conditions. 

It helps to determine the resulting distribution of singularity on the surface, and there by obtaining 

fluid dynamic properties of the flow. This project work describes a method for simulating, the 

potential flow field about the arbitrary two-dimensional bodies using MATLAB program. Even though 

singularities can be used as sources, doublets, or vortices, at this point the panel method uses the 

vortex element because it is talented to model both lifting forces and pressures. The numerical codes 

developed for this purpose computes the circulation, flow velocities, coefficient of lift and coefficient 

of pressure distribution over various geometries along with the streamline of corresponding bodies. 

Similarly the flow analysis is done for the same two dimensional bodies using FLUENT flow 

simulation tool and the results have been compared. The advantages of this numerical scheme over the 

conventional flow analysis are also presented in terms of reliable flow field data. 
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1. Introduction 
The  potential  flow  past  a  body  placed  in  a  uniform  stream  can  be modeled equally well by replacing the 

body surface with either a source or a vortex sheet of appropriate strength [1-3]. Integral equations can then be 

written expressing the Neumann boundary condition of zero normal surface velocity for the source model or the 

Dirichlet condition of zero parallel surface velocity for the vorticity model [4]. Any type of singularity is chosen 

the final outcome is one and the same, namely a prediction of the potential flow velocity close to the body profile 

[5].  

 

1.1. Steps toward Constructing a Numerical Solution 
When establishing a numerical solution for potential flow a sequence similar to the following is recommended. 

a) Selection of singularity element 

b) Discretization of geometry 

c) Influence Coefficients 

d) Establish RHS 

e) Solve linear set of equations 

f) Secondary computation 

 

2. Flow over an Aerofoil 
Using Aerofoil coordinate developer MATLAB script the NACA four series airfoil is generated for this potential 

flow analysis. Similarly we can use NACA five series airfoil too. The following steps are scripted in MATALB for 

the potential flow analysis of airfoil [6].      

 

2.1. Coupling Coefficient 
From Biot- Savart law, 
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Resolve dqmn parallel to the body surface at m where the profile slope is defined as βm. It can be expressed 

in terms of coordinate locations through 
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Coupling Coefficient Matrix 
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As earlier, take the control points at the midpoint of the panel. Eq. (2.4) should be satisfied at all the points on 

the body surface. This can be achieved most simply if the surface is broken down into finite number M of straight 

line elements of length Δsn, which can be expressed as 
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U∞ and V∞ are the components of W∞ parallel to the x and y axes. It will be observed that Eq. (2.5) is finite but 

indeterminate as written for the special case n = m since both numerator and denominator are then zero, which may 

be written then
 1

( , )
2

m mK s s 
                                                                      (2.6) 

With simplified notation Kmn= K (sm,sn) and right hand side is  

cos sinm m mrhs U V    
                                                 (2.7) 

The circulation induced around the profile interior due to a unit vortex located at sm, namely 

( , )m n m nK s s ds                                                                (2.8) 
 

 
Fig-2.1. Circulation induced around profile interior due to a unit vortex just outside the profile at element m 
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2.2. Back Diagonal Correction 
The net circulation ∆Гm around the profile interior induced by a surface vorticity element such as γ(sm)∆sm 

should be zero [7, 8]. If this condition is enforced upon matrix coefficients, Eq. (2.8) becomes 
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opp = M+1-m 

Introducing m=4 into Eq. (2.9) for example gives, in the matrix notation adopted here, 

24 14 1 34 3 44 4 54 5

2
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which involves matrix coupling coefficients in column 4 only. Back diagonal element  K24   is  to  be  

replaced  by  minus  the  sum  of  all  other  column  4 coefficients scaled by their element lengths Δsn and finally 

divided by –Δs2. 

 

2.3. Wilkinson`S Kutta Condition 

   1( ) ( )te tes s   
                                                              (2.11) 

Remembering that for smooth flow leaving the trailing edge γ (ste) must be clockwise and γ (ste+1) must be 

anticlockwise and therefore negative 

 

 
Fig-2.2. Aerofoil trailing edge flow 

 

2.4. Lift and Pressure Coefficients 
The pressure distribution and lift coefficients are obtained from the panel velocities. The velocity at each panel 

is the summation of the induced velocity contributions of the other panels. These velocity contributions are obtained 

from the solved vortex strengths [9, 10]. 

Pressure Coefficient can be obtained from the equation 
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Lift coefficient can be calculated from the equation, 
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2.5. Mesh File 

Dimension of the control surface is width of 20c, height of 25c and diameter of 12.5c. Totally 25712 mesh 

faces in the control surface in which each cell of size 0.705. Unstructured triangular mesh is used for defining the 

flow angle and it avoids the frequent repeated meshing with respect to the different angles of attack [10]. 

Appropriate Boundary condition for flow analysis is shown in the Fig 2.3.  
 

 
Fig-2.3. Mesh file of NACA 0012 Airfoil 
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2.6. CFD Results 
 

 
 

Fig-2.4. Cp distribution for NACA 0012 at 00 Fig-2.5. Cp distribution for NACA 0012 at 50 
 

  

Fig-2.6. Pressure Distribution of NACA 0012 at 0o angle of attack Fig-2.7. Pressure Distribution of NACA 0012 at 5o angle of attack 

 

Meshed airfoil is analyzed using inviscid flow solver and the resulting pressure distributions over the profile are 

compared with the potential flow method. Pressure distribution over the NACA 0012 aerofoil at 0
0
 and 5 

0 
angles of 

attack is presented at this point and the results almost match with one another as shown in Fig 2.6 and Fig 2.7. 
 

 

3. Flow over Compressor Cascade 
Consider a compressor  blade profile of C4/70/C50 with inlet angles β1 and of stagger angle λ. The fluid 
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approaches the cascade from far upstream with velocity W1 at an angle β1 and leaves far downstream of the 

cascade with velocity W2 at an angle β2.  

The modified cascade coupling coefficient is as follows, 

   

 

2 2
sin cos sinh sin

( , ) cos sin
2 22

cosh ( ) cos

m n m m n m
n

m n mn m mn m

m n m n

y y x x
s t tK s s u v
t

x x y y
t t

 
 

 
 

 
   

    
   
  (3.1)

 

The self-inducing coupling coefficients for a cascade are identical to those for a single aerofoil, namely 
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The corresponding unit bound circulations are then given by, 
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The outlet flow angle can be found from the equation,  
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By taking the circulation about path abcd for one blade pitch, Γ may be related to t, W∞ and the flow angles 

through 
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From the  v e l o c i t y  t r i angles , a n  addi t iona l  impor t an t  re la t ionsh ip  c a n  be  obtained, linking β∞ to β1 

and β2, namely 
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For the cascade, W∞ is the vector mean of W1 and W2. The mean velocity W∞ is defined as, 
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Then the pressure coefficient can be obtained from the equation, 
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3.1. Mesh File 

Dimension of the control surface is width of 2c and height of 1.5c. Totally 13125 mesh faces are created in the 

control surface in which each cell size is about 0.835. 

 

 

 
Fig-3.1. Mesh file of compressor C4/70/50 blade 
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3.2. CFD Result  
 

 

 

Fig-3.2. Coefficient of Pressure distribution over the compressor cascade Fig-3.3. Pressure Distribution for C4/70/50 compressor blade 
 

3.3. Output from MATLAB Program 
In potential flow method it depends on stagger angle, Pitch/chord ratio and Inlet flow angle whereas flow 

analysis just requires inlet flow angle. The inlet flow angle is resolved into two components such as cosine and sine 

for analyzing the blade in normal position. These components are multiplied with velocity and given to the respective 

axis. Pressure distribution obtained from the potential flow method having slightly greater magnitude when 

compared to the conventional flow analysis method. This variation does affect the other parameter such circulation 

and coefficient of lift. 

 

4.  Flow over a Tandem Cascade 
Consider a tandem blade having solidity=0.736, Inlet Flow Angle=45.46

0 
and Total chord=3.45cm. It includes 

two airfoil elements with well optimized nozzle gap. First airfoil having leading edge radius of 0.0555 inch and 

trailing edge radius of 0.0150 inch. Then second airfoil having leading edge radius of 0.0542 inch and trailing edge 

radius of 0.0150 inch. 

The coupling coefficient representing the induced velocity at pivotal point ‘m’ of body ‘p’ due to element ‘n’ of 

body ‘q’ is then given by 
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In this case, the self-inducing coupling coefficients (when p = q and m = n) are solved as same as that for 

airfoils. 
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4.1. Mesh File 
 

 
Fig-4.1. Mesh file of low solidity tandem blade 
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For defining the inlet flow angle rectangular control surface is implied with dimension of width 2c and height 

1.5c. Totally 15432 mesh face are present in the control surface having each element of size 0.896. Boundary 

condition almost same to the aerofoil mesh but the side walls of velocity inlet is replaced by periodic to provide the 

cascade arrangement. Boundary condition such as periodic should be edge meshed. 

 

4.2. CFD Results Output from MATLAB Program 
 

 

 

Fig-4.2. Cp distribution over tandem cascade Fig-4.3. Pressure Distribution in Low solidity Tandem Blade 
 

Pressure distribution for tandem blade obtained from the potential flow method having slightly greater 

magnitude when compared to the conventional flow analysis method.  

 

5. Conclusions 
In conclusion, the MATLAB programs for analyzing the flow over various geometries have been written 

using the vortex panel method.  These codes require less time to compute the flow properties when compared to 

other finite volume solvers and could be adapted to any single and multi-element aerofoil geometries. Hence, it can 

be utilized as an alternative approach to fully coupled analysis procedures that requires huge computing resources. 

The optimization of geometric and flow variables is also allowed in the computer program developed. Thus, the 

best combination of flow and geometric dimensions can be finalized through the proposed algorithm. Further, the 

achieved results are validated against CFD results and good agreement is achieved. 
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