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Abstract

In this article, we study the asymptotic behavior of the infinite Prandtl-Darcy number Darcy-Brinkman-
Boussinesg system. We derive the asymptotic expansion with respect to the Brinkman-Darcy number,
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1. Introduction

Convection phenomena in porous media are relevant to a variety of science and engineering problems ranging
from geothermal energy transport to fiberglass insulation [2]. The purpose of this paper is to investigate the
approximations of the infinite Prandtl-Darcy number Darcy-Brinkman-Boussinesq system as the Prandtl-Darcy
number goes to zero.

Here, we consider the following infinite Prandtl-Darcy number Darcy-Brinkman-Boussinesq system
(IPDDBB),

—X00° +0°+Vp° =»T°k,  in[0,T]xQ,

divi® =0, in [0, T]xQ,
0T +0U"-VT® =AT", in[0,T]xQ, (1.1)
i° =0, T° =T, att=0,

u |z:0,1= 0,T* |z:0:1’T8 |z:1= 0.
Where &° is the Brinkman-Darcy number, y is the Rayleigh-Darcy number, K is the unit normal vector

directed upward (the positive z direction) and Q= (0,27)*x(0,1) is a 3-dimensional channel, periodic in the x —
and y — directions.

Formally setting the Brinkman-Darcy number to zero, we arrive at the following infinite Prandtl-Darcy number
Darcy-Boussinesq system (IPDDB),

a®+vp°® =Tk, in [0, T]xQ,

divi® =0, in[0, T]xQ,

0T +0%-VT® =AT®, in[0, T]xQ . (1.2)
a’ =0, T°=T,, att=0,

Ug |z=0,l: O’TO |z=0:1’T0 |z=l: 0.

The well-posedness and further regularity of (1.1) and (1.2) was established in [1, 3, 4]. Payne and Straughan [5]
have established the convergence in L on any finite time interval of the solutions of the IPDDBB to those of the

IPDDB without resolving the boundary layer. However, we can not expect a convergence result of G¢ to G° in the
uniform space since they do no have the same traces on the boundary. This question was addressed in Ref. [1], in
which the authors gave a representation of the the DBB solutions U° to the boundary and proved convergence
results in several Sobolev spaces, especially, the uniform convergence in the case Qe 2.

There is an abundant literature on boundary layer associated with incompressible flows and the related question
of vanishing viscosity (see for instance [6-13] among many others).

Our interest is to derive the complete asymptotic expansion for U°, when ¢ goes to zero. This is similar to the
case of the boundary layer for the incompressible Navier-Stokes equations flows. We borrow from the work on
Navier-Stokes and related systems, especially ideas and techniques in terms of corrector, weighted estimates,
differential treatment of the tangential direction(s) and anisotropic embedding.

The article is organized as follows. Sect. 2 deals with the boundary layers. In Sect. 3, we show how to choose
and construct the correctors of all orders, and propose our main results. Sect. 4 is devoted to the convergence in

energy (L?) space. Finally, in Sect. 5, we complete the proof of the convergence theorem in uniform norm.

2. Some Results of the Boundary Layers
Throughout this article, without particular mark, the constants, for example C, are irrelevant to ¢. Since the
boundary layers appear near the boundary at z direction, the x— and Yy — directions are denoted by 7 .

In order to study the boundary layers, we introduce some function sets X ™, xg” and le ,Whereme[J .
Definition 2.1 We say a function 8° € X™, if and only if 8° e H™((0,T)xQ) and the following inequalities hold

sipl+d
7

<Ce¢ , (2.1)
<Cg™ M, (2.2)

S sAaApf &
12°(A1~2)°07070,0° Nl (o 1
S _ \SA2ABAY pE
|l z°(1-2)°0; 070,60 dZ”Lﬁ,(uz)
where s >0 and multi-index «, S,y satisfying| a|+| B|+]| 7 |<m.

Definition 2.2 We say a function 6° € X', if and only if 8 € H™((0,T)xQ) and the following inequalities hold

syt
7y

<Ce¢ , (2.3
<Cg¥t (2.4)

sAaaABAY nE
PR .
SAx AL AY NE
| z°67 0% 0.6 dZ”L;,(le)
where s >0 and multi-index «, S,y satisfying| a|+| S| +]| 7 |<m.

Definition 2.3 We say a function 8° € X", if and only if 8° € H™((0,T)x€2) and the following inequalities hold

et
la—2z) a%0%07 6"l <ce "2, (2.5)

L2((0,T)xQ)
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@a- z)saf‘afagegdzllw)
where s >0 and multi-index «, f,y satisfying| ' |+| S| +| 7 |<m.
Definition 2.4 We say a function #° Y™ if and only ifl| &l , <C.
For the following results, we can refer to Xie and Li [12] and Temam [14].
Lemma 21 Let f°eX™? and weY™((0,T)xaQ) . Then there exist 6'(j=1234),

st.0°=0"+60°,0 e X",0%° Y™, 0% X™,0* Y™, satisfying

<Cg¥t (2.6)

2
—52%§”+0—”+qu =f°+e0°+0%,
z

in Q,
div® =0, inQ, 2.7)
o° = ((//1’(//2,0) on oQ.

Lemma 2.2 Suppose f, g,T% €Y ™and some compatibility conditions up to m hold. Then the solutions of the
equations

0+Vp=yTk + f, in (0,t7)xQ,

V-i=0, in (0,t")xQ,

OT +0°-VT +0-VT°=AT +g,in (0,t)xQ, (2.8)
0-i=0,T =0, on 6Q,

T=0, att=0.

satisfy GeY™, T eY™.

3. Derivation of the Asymptotic Expansion Equations and Main Results

Our interest here is in the asymptotic behavior of the solutions of the IPDDBB equations (1.1) at the small
Brinkman-Darcy number.

Considering the physical boundary, we propose a sequence of approximations

K _ _ . [ _ _ )
0° =W, + > l(@ +67), T =W+ > /(T + ). (3.1)
j=0 j=0
Now, taking (3.1) into IPDDBB equations (1.1), we arrange the terms in the following order
a° —yT% —&2Aa® (3.2)

2
-&° %éo +6° —y9°%k —ngT§° (3.3)

+e4 0% — "y Tk — £2AT* (3.4)
0% = ~ —~ ~

—gh+? Fﬁk +&40" — "y 9k — A 6" (3.5)
z

—&?OW " + WS + Vp® — Wk =0 (3.6)
§T°+UO-VT°—AT°+§°-VT° (3.7)

0

2
—a—3°+al9°+u°~v3°+é°-v9°—A,9° (3.8)

oz°
. a k-1 o
+£ aTk +EU° VT 4+ U - VT = "AT + D ! - VT
j=1

k . - k71 . — k PR -
+> eMgh.vT! +Z{‘;gk”0' VTH +Z(;gk”0k VT!
J= =

=1 i

(3.9)

82 6 k-1 o
—e —F+e — g - I +ng+‘l]‘ VI
oz ot -0

: (3.10)

k . ) k-1 . kK o )
+>_ VI 1Y £ VI D e v

j=0 j=0 j=0

+§WT“ +O7- VWS WS VTS —WE VWS WS =0, (3.11)
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The IPDDB equations (1.2) can be constructed by (3.2) and (3.7). Thanks to the consistent
conditions, 0° €Y **®, T® e Y**7 (the consistent conditions of IPDDB and the following linear IPDDB equations
are shown in the end of this section).

From (3.3) and applying Lemma 2.1, we know there exist 8° = 6% +£6%%, 6°° e X*** 9%* €Y *** which
satisfy the follows:

2
62 054 00 1V = 66 + 60°¢,
0z in Q,
divd® =0, inQ, (3.12)
6° =-a°, on 8Q.
From (3.8), assume that $° satisfies
o? .
2 0 _
& P " =0inQ, (3.13)
9% =0 on oQ.
The remainder terms are
fO=—£200° — p 9K — %0 0° +£6°° + £0°* = ' + £ %2, (3.14)
§°=0°-VT°+ ;9% VE+0° VP 4 9 =G +£§°° (3.15)
where .FO,l c X4k+2, .FO,Z €Y4k+2, gO,l E£X4k+2 and gO,Z €Y4k+2.
&

fO,l

f°2 and §°2 are used to construct the equations with respect to G* and T*, and G°* are used to construct

the equations with respect to 6' and ¢, respectively. Step by step, all the equations are constructed.

Now, after obtaining f“* e X®, g™ e=X°®, f*?cY® and §**2cY®, we give the equations with
&
resect toG*, T*, 6% and 9.
—k k _ ki, £k-12
Ve =Tk 1 in (0,T)x 2,
V- =0, in (0,T)xQ,
%Tu VT 40 VTP =AT* + §“*4in (0, T)xQ, (3.16)
K = k on 0QY,
n=0T"=0,
2
—528—29“ +0°+vQ" = f*M 4 e + g0,
0z in Q,
dive* =0, inQ, (3.17)
6" =—a*, on &<.
0° ]
29 g _gtlinn
o7° g (3.18)
9° =0 on oQ.

Here G“eY®, TXeY’ K 0%=0"'4+66%2, 0% eX* g2cY?,K 6°cXx*,6 6 cY’ G =gd'+s9?,
FteX®and F?eY®,
The remainder terms are
f=—gAa* —7,9kIZ—82A 0% +£6"° + £0"* = 4 %2, (3.19)
g _Zg a-vT +Zg'uk VT‘+Z€’¢9‘ VTH +Zgu9k VT

=1 i=0 j=0

+gk§3k—gkA,,9k+ng”Ui~v9k+28k“*k vy
61: j=0 j=0 (320)
k-1 . k = .
+Z£k”9’ V9~ +Zek”9k VI
j=0 j=0

=efiefe?,
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z = - 1 ~
where f¥'e X? f*?eY? g“'e=X? g“?eY?.
£
Thus, the error equations are

—£? AW + WS + Ve = WK + X TR 4 gt fR2,

VW =0,
gwkwﬂﬂvmV+NFNN?NW%VWF—AW&=5“¢M£“¢% (3.21)
W =0,W** =0at z=0,2=1,

W/* =0 at t=0.

The results about the adjusted differences VVUO'S and WTO'S can be found in Kelliher, et al. [1]

Theorem 3.1 ([1]) Let G°, T® eC*([0,T]xQ),k > 6. Then
A70.& A7 0.
Wl , SCe W sy <C

(<Cell Wl

L*(0,T;L?

(3.22)

WPl <Ce.

If Qell?,

L2(0,T;HY)

0
1w 1< W]

1
<Cg?
oy o , <Ce?,

2(0,T;L?
1

<Ce&*, (3.23)
3

| W] <Cég?.

L7 ((0,T)xQ)

o
Wl

L7 ((0,T)xQ)

Each of the constants, C , depends onlyon T, and T .

Now, we show the compatibility conditions of the above equations.
Lemma 3.1 Forany k €[] , we assume

Ty =To(2), Ty |,.o=1T, [,4,=0,
521 ] ) (3.24)
and —-Ty=0atz=01 jel", j<4k+6.
oz’
Then, the above IPDDBB, IPDDB and linear IPDDB equations have the compatibility conditions.
Proof. From T, =T,(z), we know P(T,k) =0, where P is the projection operator from L?(Q) to its divergence-
free subspace according to Hodge decomposition.
Then by the first equation of IPDDBB system (1.1}) and IPDDB system (1.2), U°|_,=0, 0°|_,=0.

Furthermore f°|_,=0, §°|_,=0. From the equations, we have %Tf o= (gTO) lo=AT,=0at z=0,z=1.

o, ok N ol - . .
Let ET o= ETO lo=A"T,, < j,. Then P(ETOk) =0, and by the first equation of IPDDBB system

L o o o
(1.1) and IPDDB system (1.2), ik l,=0, ﬁuo l_o=0. Furthermore ol f°]_,=0, ﬁgo l_,=0. From
ajﬁl ajo 0 -
the equations, we have (———T°) |t=o=Aat—-T =A*"T, =0. Then applying the conductive method and (3.24),

Jo+1 Jo

IPDDBB system and IPDDB system have the compatibility conditions up to 4k +6.
o'z 0O
Noting that E fo :Eg0 =0 at t =0 and following the same way, the compatibility conditions of linear

IPDDB system with respect to t" and T* can be obtained. It is trivial to prove the result by the conductive method..
The previous regularity results of the IPDDB equations and linear IPDDB equations hold.

Corollary 3.1 Assume (3.24) hold. Then,
0 R 0? R
a-\/\/Tk'=o,5t—2v\/Tk'=0att=o. (3.25)
Our main results are as follows

1
Theorem 3.2 Suppose (3.24) hold. Then for any S < E ,

Vi k+1 k,e
WD ey SCE WL

) < C€k+s’” WTk,gH

)scg“ﬂ (3.26)
= Ce ', (3.27)

L (0,T;L?

A K.
<]

L*(0,T;L” L”(0,T;L*

10
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where the constant, C, depends only on T, andT .

Remark 3.1 The proof is shown in the next two sections. The estimate (3.26) is simply obtained in Sect. 4 by
energy estimates. Nevertheless, for the uniform estimate (3.27) some technical results are needed. More precisely, we
will use an annpropriate anisotropic embedding theorem in the proof of the estimate (3.27) which is the subject of
Sect. 5.

4. Proof of the Convergence in the Energy Norm

Since we have obtained k-order boundary layers, it is trivial to derive the L estimates of the adjusted difference
by energy estimates.

Multiplying the first equation of Egs. (3.21) by VVuk"’ and integrating in €, we have

. . 1. -
2 k,e|12 k,e|12 k,e|12 k,e (2 2k+2
2 VWS I <IN, 4O WEIR +Ca™2, @

then,
g VVVu”IIiZ -+l VVuk'gllﬁz <+CI W2, +Ce®2, (4.2)

Multiplying the third equation of Egs.(3.21) by WTk"S and integrating in Q, we have

IQ%NT“ W = %%II Wl (4.3)
[ @ -vwfewie =o, (4.4)
|ijVukvf VT + ) WS VT + DI Wl
<Cl W I, +CIE W,
[ W vk =0, (4.6)
- IQAWT“ W =1 VWA, (4.7)

(4.5)

Wk,g
k+1 zk,1 . k,e k+1 _ ~k,1 T
|IQS gt WS < Yl z(L-2) § HLZHz(l—z)HLZ

3
<Ce'?| VWl (byHardy'sinequality) (4.8)

S%Hm¢ﬂ§+cf“{
|[,,276"% Wi < 1 g 2R, I W, < CIE W IR, +Ca™ 2. (4.9)
Combining (4.2)-(4.9), we have
%II W IR, + VWEIR, < CIEWEeIZ, +Ce® 2, (4.10)

By applying the Gronwall inequality, we obtain
k,e k+1
Wl o2y SCE (4.11)

Recalling (4.2), we have
AT K.e k+1 AT K.e k
W 2y SCETI VWL oy <CEF (4.12)

This concludes the proof of (3.26) in Theorem 3.2.

5. Proof of the Uniform Convergence

Our object in this section is to obtain the L* estimate of the adjusted differences and complete the proof of
Theorem 3.2. We use the technique tools in Xie and Zhang [15], more precisely, by applying an appropriate

anisotropic embedding theorem. And the L(0,T;L?) estimates of the derivatives are needed. The estimates of

derivatives to t and 7 are derived by energy estimates without worrying about boundary conditions. The modified
Gronwall inequality are employed to deal with the nonlinear terms. The estimates of the 1-order derivative to z can
be obtained by (4.10).
We postpone the proof of Theorem until the following Modified Gronwall inequality is drawn just as in Xie and

Zhang [15].
Lemma 5.1. [15] Suppose y(0)=0, y(t) eC" and
a
dt
where & is a small positive constant and the constant C is not dependent on & .

Then we have
y2(t) <Ce&™*?, fort <T. (5.2)

Recalling (4.10), we have

Yt <C(e 2y +2y? + &™) fort <T, (5.1)

11
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Lemma 5.2

& +. a & +
I VWl < Ce* 1IIaWTk’ I, +Ce™*2, (5.3)
In view of Lemma 5.2, in order to obtain the L*(0,T;L?) estimate of VW, now we show the L*(0,T;L?)

estimate of %WT“ :

Differentiating Egs. (3.21) in time and denoting |, = %Wuk"‘" and J, = %WT"’” , we have

0 ; 0 z
k+l_fk,1+gk+1_ fk,Z

— &A1, + I1+V§ P =ylk+e

ot ot
V-1, =0,
ﬁles ~VJ1+208 AVATASERITAS vOrey l,-VT*
ot ot ot (5.4)
= 0 0
_Wk,s 'V\] _I -Vwk,g _AJ :8k+l_ ~k,1+8k+l_ ~k,2,
u 1 1 T 1 6’[ g 6’[ g
I, =0,J,=0at z=0,z=1,
J,=0att=0.
In a same manner, multiplying the first equation of (5.4) by |, and integrating in Q, since it is linear, we have
NN VLIEHILIE, <Cll J,JF, +Ce®*2, (5.5)
Multiplying the third equation of Egs. (5.4) by J, and integrating in Q, we have
0 1d 2
anJl =5 (5.6)
[ @ev3,-3, =0, (5.7)

0 =3 ni k,e
|jga(u +67)- YW, |

< (Sl S 71,1 VWl 3 (by Lemma 5.2) (5.8)
<Cll 3, +Ce*?,
V2 (493, (ST 91N 3
<Cll 3P, +Ce**?,
1983, (T I 13,0,
<CILIE, +CIF I,

L21

[ W)-v3,-3, =0, (5.11)

(5.10)

[ 1 VW 3y 1 W v, |
<N AWl I vyl (by Gagliardo-Nirenberg inequality)
< (1 VAW +HE VW VL
1 & &
sgll VIIE +C( LI+ VLIE )W, +HE VWEIE,) (5.12)
(by (5.5) and Lemma 5.2)
1 - + +
sgll VIIE, +Ce? 3,8, (M 3,1, + &%)

g%n VI +Cll 2 +Ca ]| 3, +Ce2 for k=1,

—[ A3 3, =1 v, (5.13)

L21

12
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k+lIQ( g + ~k,1)"]l|

<& z(l—z)— Gl |

J; 0
gl IS e 61

1 :
<3 V3, IE, +Cll 3 I3 +Ce™,
Combining (5.5)-(5.14),
d
E” J B+ VIIE, <C(eN 31, + 21 3,1, +£5%). (5.15)

In view of (5.5), Lemma 5.1 and Lemma 5.2, we have
Lemma 5.3

0 0
IIEWT”H cory SCE vawﬁvfll

L“(.T;

2y S Cek, (5.16)

L2(0,T;

k
12 <C&, (5.17)

L*(0,T; L*(0,T;

G o -

=Wl 2y SCEHT VWA

6t u %) 6’[ u
k.,e k+1

FVWEAL 72y SCET (5.18)

Inan analogous manner, we can prove

d N
a|| VWEIR, I vV WEIR, < e, (5.19)

&l vV Wi 1B+ v W I, < Ce? 2, (5.20)
Therefore,
Lemma 5.4

AT K. k+1 AT K.e k
VW, ||Lm(O,T;L2)ng NIRAYA'Y IILm(O’T;Lz)ng, (5.21)
k,e k+1
VY Wl 102y SCE (5.22)

|| AVAV/ Wk g||2 2k+2

0
k+1 k,e
or SCET T +Ce IIEVTWT 2 (5.23)

For the uniform estimate, we now deduce the L*(0,T; L2) estimate of %VTWT"’”.

82
otox

Differentiating Egs. (5.4) in x and denoting I, =§Wu“, l, =——W5*, J —aﬁw“

, we have the following equations

2 2 2

—&*Al, + 1, +V aax p e = yJ Kk +&t _afax fltq gt _afax fk2 (5.24)

V-1, =0, (5.25)
0 0’ e O 0
—J,+—0" - VW +—0°-VJ), +—U0°-VJ, +0°-VI, +1,-VT*
ot otox oot X ' v
0 0 = 0’
1 V=T +1,- V=T +W"* . V—T°n-1, - VW " -1 - V],
OX ot Otox
(5.26)
—1,-VJ,-W .V, ~AJ,,n
0* . o
:€k+1 gk’1+€k+l gk,21
otox otox
l,=0J,=0atz=0,z=], (5.27)
J,=0att=0. (5.28)
Multiplying Egs. (5.24}) by |,, and integrating in Q, then repeating the same procedure as in the precious proof,
we have
2 2 2 2k+2
Multiplying Egs. (5.26) by J,, and integrating in Q , We have
0 1d
anle-le L I,lP, (5.30)

andJ,, =

2

otox

k,e
WT
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2

Tl iy, ke
oo @ +07) VW3, |
o 0* =
< (= @l H—— 0 VW)

2 2k+2
<CIH Il +Ce™,

0 ,.i =i 0 . 0
|kaﬂH+W)V%JuEG%wWHMaHWwWV%Mwbm

0 . = 0 _. 0 =
”9&(“ +0')-VJ,-J, | (||&u’|lw +||&0‘||Lx)|| V[ 3l

<CllI, I, +ClI VI, ¢

LZ!

12
<Cll J,lF, +Cll Va1,
J'ng Jip-J, =0,

|£hfvai+wanngTwFMngwmhﬂgugb

mgfvgauﬂnJﬂgmngm;uvgmmmgmn%m

0 i i
IR URT RN S (A

R
[V 48) -3 <1V

2 2
<ClH1lR +Cl 3,

12!
0 0

—TJ'IILw+|| vV—
X OX
<Cll1lE, +Ce™2,

<CII, I, +Ce™?,
62
otox
<Cll I +C&™?,

82
OX

IQ |12 'WTkyg "]12 |
:| jQ IlZ 'WT“ ’V‘Ju |

<l 1l

<Livs
8
1

Sg” V\]12||E2 +Cll Jp, ”2

[RVAS IR AR
<l 1l WLl V34, (by Gagliardo-Nirenberg inequality)l?,,

wllZ +Ce¥11 3,12 (by 5.29 and Lemma 5.3)

LZa

|IQ|1'J2"]12|

:l IQ |1'J2 'v‘]lz |
<UL 30Vl

<[l

3,10 V3Ll (by Gagliardo-Nirenberg inequality)

< %II V3,5 +Ce® (62241 V3,IE,)  (by Lemma 5.3and 5.4)

1

£§|| V3,5 +Cll V3,2 +Ce? 2,

SR 10 1 T T

Tl V= SN 3l

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

14
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|IQ|2'J1'J12|
=| IQ l,-3,-VJ, |
o I Y T I O 1
< ILIE NI VLI, (by Gagliardo-Nirenberg inequality) (5.41)
< %II VI, I5 +Ce® (241 VII%)  (by Lemma 5.3and 5.4)
1 .
s§|| V3,5 +Cll VI +Ce™2,
[ wke.va, -3, =0, (5.42)
[ AJ- 3, =1 VILIE,, (5.43)

k+1 62 k,1 82 k1

&M (—g§"t+——g*""-J

| jg(ataxg 59 %
82
otox

Akl ‘]12 k+1 az ~k,2
Gl ==l + &M ——=G"“ll.Il I, (5.44)

<& z(1-2) TR . -

%, +Cll 3, IP, +C™2,

1
<2l VI

Combining (5.29)-(5.44),

d
all Jpll+HI VAl <CIHILIE +Cl VIE, +Cll VI, I, +Ce™2, (5.45)

L L

Therefore, by Lemma 5.3 and 5.4,

k+1
1350l g 72y <CE (5.46)
In an analogous manner, differentiating Egs. (5.4) in y, we have
Lemma5.5
a k,e k+1
IIEVTWT I 72y SCE (5.47)
Combining Lemma 5.4 and 5.5, we have
Lemma 5.6
K,e k+1
VYV WL o2y SCE (5.48)
Finally, we conclude the proof by applying an appropriate anisotropic embedding theorem (see e.g. in Ref.
[12]),
H u||L°°(0,T;L°°)
0 s 2= 39 1 (5.49)
+ 2 2 2+6
SC[HEUHUG(H%XL%)(H u”Lw(H%XLg)—'_H u”Lx(H%XLg)HEu”Lx(H%XL%))] ]

where 0< o < 2.
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