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Abstract 

The most effective therapeutic intervention for reducing infarct size and improving outcomes in 
patients with acute myocardial infarction is the thrombolytic therapy or percutaneous coronary 
angioplasty. However, this process itself can generate ischemia-reperfusion injury that can be 
responsible for up to 50% of the final infarct size. Considering oxidative stress as the main 
damaging agent in this pathology, it has been postulated that reinforcing antioxidant defenses 
could improve cardiac function. However, up to date clinical trials based on monotherapies have 
been consistent in the favorable results. In this review the pathophysiological mechanisms of 
myocardial injury due to ischemia/reperfusion in patients undergoing percutaneous coronary 
angioplasty are updated. In addition, new therapeutic alternatives for cardioprotection in this 
population, are explored, with emphasis in the combined therapy as a novel antioxidant treatment 
for this myocardial injury. 
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Contribution of this paper to the literature 
This review contributes as an updated of the main pathophysiological mechanisms of myocardial injury 
due to ischemia/reperfusion in patients with acute myocardial infarction, with emphasis in the role of 
oxidative stress as a therapeutic target that could reinforce the antioxidant defense for cardioprotection. 

 
1. Introduction 

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels. It was reported that 
17.9 million people died from CVDs in 2019, representing 32% of all global deaths [1], among which coronary 
heart disease (CHD) is the leading cause of death, being responsible for 16% of total deaths worldwide [2]. This 
represents an estimated total cost of 196,000 million euros per year in CVDs in Europe, approximately 54% of the 
total investment in health [3]. Moreover, CHD was one of the 10 most expensive conditions treated in US 
hospitals in 2013 ($9.0 billion) [4]. 

In ischemic heart disease, cardiomyocyte death almost always occurs in the context of severe and prolonged 
myocardial ischemic events, which are a consequence of thrombotic complications from atherosclerotic plaques [5]. 
In most cases, disruption of a vulnerable atherosclerotic plaque or erosion of the coronary artery endothelium 
generates arterial lumen occlusion and produces a series of biochemical and metabolic changes that eventually lead 
to the death of cardiomyocytes. This cell death is further exacerbated when the occlusion of the coronary arteries is 
complete, generating an acute myocardial infarction (AMI) [6]. 

 The most effective therapeutic intervention for reducing the size of a myocardial infarct and improving the 
clinical outcome is timely and effective restoring of coronary blood flow using either thrombolytic therapy or 
percutaneous coronary angioplasty, but this process itself can induce further cardiomyocyte death and increased 
infarct size, a phenomenon known as ischemia-reperfusion injury (IRI), thus reducing the beneficial effects [7, 8]. 
In fact, IRI can be responsible for up to 50% of the final infarct size [7].  

Although the molecular mechanisms underlying myocardial IRI are not well defined [9], several experimental 
studies have shown the important role of oxidative stress in this complication, and it has been postulated as a 
therapeutic target for cardioprotection [10-16]. Therefore, reinforcement of the antioxidant defense system should 
be expected to protect the myocardium against IRI, however, up to date the results of this proposal has not been 
successful and needs more studies.  

Although multiple therapies appeared to be effective in attenuating reperfusion injury in the experimental 
setting, translation into clinical practice has not been demonstrated to be consistent [17]. Therefore, the present 
work describes the pathophysiological mechanisms of myocardial IRI, with emphasis on the role of oxidative stress 
as a target for novel therapeutic strategies for cardioprotection. 
 

2. Pathophysiology of Myocardial Reperfusion Injury 
2.1. Alterations in Myocardial Function 

The impairment of cardiac function during myocardial reperfusion can generate four types of cardiac 
dysfunctions [7]: 

a) Myocardial stunning, it is defined as mechanical dysfunction that persists after reperfusion, despite the 
absence of irreversible damage and the restoration of normal or almost normal coronary flow [18]. It is a 
result from the detrimental effects of oxidative stress [19-21] and intracellular calcium overload on the 
myocardial contractile apparatus [19, 20, 22, 23]. This phenomenon occurs in a wide variety of 
pathophysiological conditions [20] and the affected zone usually recovers after several days or weeks [7]. 

b) Reperfusion arrhythmias, is a disturbance of cardiac rhythm that arises as a consequence of a total or partial 
restoration of flow in tissue which has been previously globally or regionally ischemic [24]. Arrhythmias 
during or immediately after reperfusion are seen in experimental animal models and in humans [25]. In 
fact, they are often present in reperfused acute ST-segment elevation myocardial infarction (STEMI) 
patients, particularly after thrombolysis. In this population, the most commonly encountered reperfusion 
arrhythmias are idioventricular rhythm, ventricular tachycardia, and fibrillation [26], which usually self-
terminate or are easily treated [7, 26, 27]. Early reperfusion arrhythmias are considered evidence of 
successful reperfusion and vitality of the cardiomyocytes [26]. 

c) Microvascular "No-reflow", is a phenomenon that describes when the previously occluded epicardial artery 
restores the blood flow, but it remains the inability to reperfuse the infarct zone [28, 29]. The 
microvascular obstruction (MVO) is considered the main responsible mechanism, and it causes an 
irreversible form of damage that results in both myocyte and endothelial cells death [30]. The underlying 
etiology of MVO is unclear [25], but some factors have been associated, including capillary damage with 
diminished vasodilation, capillary compression by inflammation of endothelium and cardiomyocyte, micro 
embolization of particles released from the atherosclerotic plaque, release of vasomotor and thrombogenic 
substances, and platelet micro-thrombi [31-34].  

d) Lethal reperfusion injury (LRI), occurs when, as a consequence of the reperfusion of the infarct area, the 
damage to the previously affected tissue is enhanced [35]. The role of lethal reperfusion injury as a 
mediator of cardiomyocyte death is currently controversial. In this regard, they have suggested that 
reperfusion exacerbates the cellular injury suffered during the ischemic period [36]. 

 

2.2. Cellular Metabolic Alterations 
Adult cardiomyocytes are terminal cells without replicative capacity [37] and with high demand for adenosine 

triphosphate (ATP). This ATP is provided by the high amounts of mitochondria that cardiomyocytes possess. The 

aerobic/anaerobic glycolysis and β-oxidation of free fatty acids generates Acetyl-CoA, which is metabolized 
through the tricarboxylic acid cycle to supply ATP. Therefore, this cell type works primarily with aerobic 
metabolism [38].  

The metabolic and cellular changes associated with ischemia and subsequent reperfusion are described below: 
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2.2.1. Ischemia 
When the myocardium is exposed to ischemia and AMI, the reduced oxygen supply to the mitochondrial 

electron transport chain (mETC) causes a drop in the production of ATP. Thus, the glycolytic pathway activates 
the anaerobic respiration with accumulation of lactic acid [9, 13, 39]. The decrease in intracellular pH forces the 
cardiomyocyte to excrete H+ through the Na+/H+ exchanger, with the subsequent increase in intracellular Na+. 
Meanwhile, intracellular ATP depletion deactivates ATPases such Na+/K+ ATPase, which leads to intracellular 
Na+ accumulation [40-42]. Consequently, Na+ accumulates within the cell, activating Na+/Ca2+ exchangers in the 
reverse direction and increasing cytosolic Ca2+ [41, 43, 44]. Due to ATP depletion, the sarcoplasmic reticulum is 

unable to uptake Ca2+ from the cytosol because sarcoendoplasmic reticulum Ca2+‐ATPase (SERCA) transporter 
needs ATP to function, resulting in Ca2+ overload [38, 45]. Furthermore, rapid increases in intracellular Ca2+ leads 
to a non-physiologic opening of the mitochondrial permeability transition pore (MPT) However, the low 
intracellular pH is inhibitory [46]. Additionally, activation of intracellular proteases, such as calpain, causes a 
fragile cellular structure or hypercontracture, leading to contraction band necrosis [38, 44]. Without appropriate 
restoration of blood supply after ischemia, the lack of ATP content and high Ca2+ levels activate myocyte atrophy, 
and finally apoptosis and necrosis [47]. 

 

2.2.2. Reperfusion 
Although reperfusion is essential to restore oxygen and nutrients to support cell metabolism and remove 

byproducts of cellular metabolism, paradoxically, it can by itself inflict further damage. The mechanisms involved 
in reperfusion injury are complex and multifactorial. This review includes the effects of generation of reactive 
oxygen species (ROS), cytosolic calcium accumulation, opening of the MPT, and pronounced inflammatory 
responses Figure 1 [7-9].  
 

 
Figure 1. Pathophysiology of Myocardial Ischemia-Reperfusion. The mechanism of ischemia-reperfusion injury includes: (1) Ca2+ paradox 
due Ca2+ overload with MTP opening and activation of Na+/H+ and Na+/Ca2+ exchangers; (2) the rapidly recovered pH from acidosis opens 
the MPT, uncoupling oxidative phosphorylation and ATP production; (3) oxidative stress due to enzymatic and non-enzymatic ROS 
production.  
Note: ROS: reactive oxygen species; MPT: mitochondrial permeability transition pore; ATP: adenosine triphosphate; Mitochondria ETC: mitochondrial 
electron transport chain; Uncoupled NOS: Nitric oxide synthase. 

 

2.3. Oxidative Stress 
In the first few minutes following the onset of myocardial reperfusion, a ROS burst is produced by different 

sources [11, 48]. To control this increases in oxidative stress, the myocardial cells have endogenous free radical 
scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) 
and thioredoxin peroxidase, among others [49]. In addition, nitric oxide (NO) derived from endothelial nitric 
oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) are thought to protect against myocardial IRI 
by their cardioprotective effect [50]. Further, there are non-enzymatic antioxidant defenses, such as ascorbic acid, 

𝛼-tocopherol, reduced glutathione (GSH), coenzyme Q10, cysteine, carotenoids, flavonoids, polyphenols, and other 
various exogenous antioxidants that are currently taken in the diet or as supplements. There are many mechanisms 
whereby antioxidants may act such as (1) scavenging ROS or their precursors, (2) inhibiting the formation of ROS, 
(3) attenuating the catalysis of ROS generation via binding to metal ions, (4) enhancing endogenous antioxidant 
generation, and (5) reducing apoptotic cell death by up-regulating the antiapoptotic gene Bcl-2 [35, 51].   

The ROS production sources can be enzymatic or non-enzymatic, and their role in the pathophysiology of IRI 
will be addressed. 
  

2.3.1. Enzymatic Sources of ROS Production 
2.3.1.1. Mitochondria 

There are different sites in the mETC in mammalian mitochondria generating superoxide anion (O2
∙-) and/or 

hydrogen peroxide (H2O2). Electrons derived from NADH or some other donor can directly react with oxygen and 
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generate O2
∙-, primarily at complexes I and III, causing partial reduction of molecular oxygen to O2

∙- instead of 
reduction to H2O [52, 53] Particularly, reverse electron transport at complex I is the main source of O2

∙- upon 
reperfusion of ischemic tissue [54, 55]. 
 

2.3.1.2. Xanthine Oxidoreductase 
It can be found in two interconvertible forms: xanthine dehydrogenase (XDH) preferably using NAD+ as the 

electron acceptor; and xanthine oxidase (XO) using O2 as the terminal electron acceptor. Xanthine oxidoreductase 
catalyzes the transformation of hypoxanthine and xanthine to uric acid, with O2

∙- or H2O2 generation as by-
products. Moreover, under acidic conditions (pH~6.5), XDH may oxidize NADH instead of xanthine, thus 
promoting O2

∙- production [56-58]. 
 

2.3.1.3. Uncoupled Nitric Oxide Synthase 
While NO derived from constitutive eNOS and nNOS protect against IRI, the inducible nitric oxide synthase 

(iNOS) derived ones aggravate the damage, causing cardiac hypertrophy and oxidative stress [50]. 
Tetrahydrobiopterin (BH4) is an essential NOS co-factor, however BH4 is oxidized in the presence of ROS. 
Consequently, in the absence of L-arginine, BH4, or both, eNOS changes to its uncoupled condition and become a 
source of O2

∙- rather than NO, and contribute to oxidative stress [59-61]. Additionally, it has been demonstrated 
that the iNOS is increased after the reperfusion, producing large amounts of NO and leading to direct cytotoxic 
effects, or reacting with O2

∙- to form the highly oxidizing agent peroxynitrite (ONOO-) that causes further cell 
damage [62-65]. 
 

2.3.1.4. Reduced Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase 
NADPH oxidase isoforms (NOXs) are members of a transmembrane proteins family that transport electrons 

donated by NADPH across biological membranes, leading to reduce O2 to O2
∙-. Some studies have shown that 

NOX can also produce H2O2 [66-68]. Seven isoforms have been described previously: NOX1 to NOX5, dual 
oxidase- (DUOX-) 1 and DUOX-2 [66, 67, 69, 70]. DUOX-1, DOUX-2 and NOX4 predominantly produce H2O2. 
On the other hand, the remaining NOX isoforms produce mostly O2

∙- [53, 66, 71]. NOX1, NOX2, NOX4 and 
NOX5 are highly expressed in cardiovascular system; and specifically up-regulation of NOX2 and NOX4 are 
related to oxidative stress via production of O2

∙- and H2O2 in hearts subjected to IRI [53, 72, 73].   
 

2.3.2. Non-Enzymatic Sources of ROS Production 
The non-enzymatic generation of ROS occurs in the presence of metal ions, such as iron ones [74]. To 

understand this mechanism, it is necessary to describe iron homeostasis: 
This essential element is necessary for cell survival, in fact cardiomyocytes are sensitive to iron deficiency 

because they require large amounts of mitochondria with its enzymes that contain hemoproteins. However, they 
also are poorly protected against iron overload [75]. Therefore, the role of ferritin (FT) as the main ion storage in 
a non-toxic and readily available manner is essential. The small percentage of total intracellular iron (less than 5%) 
that does not bind to FT is defined as a labile iron pool (LIP), and exists in the cytosol, in the mitochondrial 
matrix, and lysosomes as a redox-active iron pool [76, 77]. If FT becomes saturated, the LIP will be increased and 
it will be incorporated into the Fenton reaction Equation 1 and Haber-Weiss reaction Equation 2, producing ROS. 
The Fenton reaction is a chemical reaction between ferrous iron (Fe2+) and H2O2, which produces hydroxyl radical 
(∙OH). On the other hand, in the Haber–Weiss reaction, ferric iron (Fe3+) is reduced back to Fe2+ in the presence of 
O2

∙- radicals [77, 78].  

                 (1) 
              

     (2) 
During IRI, iron-mediated non-enzymatic ROS production can trigger cell death processes such as apoptosis, 

necroptosis, pyroptosis, and ferroptosis [77]. Among these, ferroptosis highlights as a regulated form of necrosis 
caused by the accumulation of lipid peroxidation products and ROS production derived from iron metabolism, 
mainly when GSH levels in the cell are depleted or when the enzyme GSH-Px4 is inhibited [79]. GSH-Px4 can 
inhibit ferroptosis by converting phospholipid hydroperoxides to lipid alcohols using GSH [80]. 

Both GSH-Px4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) are recognized biomarkers of 
ferroptosis, and it has been reported that when an ischemic rat heart is reperfused there is greater expression of 
ACSL4 and lower levels of GSH-Px4. And this response is not replicated in the ischemic phase [81]. In addition, a 
previous study showed that ferroptosis was more active 30 min after reperfusion and not during other moments of 
this phase [82]. 

In summary, the iron overload can induce a non-enzymatic production of ROS via Fenton and Haber-Weiss 
reactions. The product of oxidative stress can potentially lead to cellular death mediated by ferroptosis, which is 
produced in myocardial IRI and may be related to the extent of the infarct size [74]. The latest results related to 
IRI-ferroptosis are important to take into consideration for the development of cardioprotective therapies based on 
ferroptosis inhibition to reduce heart IRI. 
 

2.4. Ca2+ Paradox 
During reperfusion, there is a rapid restoration of essential substrates for the generation of ATP, such as 

glucose or free fatty acids, an instantaneous increase in oxygen supply and a prompt normalization of the 
extracellular pH. This creates an extreme H+ gradient across the plasma membrane that triggers the Na+/H+ 
exchanger, leading to a massive Na+ influx with H+ outflow to the extracellular [38]. This gradient can trigger the 
inverted action of the surface Na+/Ca2+ exchanger, which excretes accumulated Na+ but leads to intracellular Ca2+ 
overload [83]. Therefore, excess of Ca2+ induces cardiomyocyte death by causing hypercontracture of the heart 
cells and MPT opening [7]. 
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In parallel, upon re-oxygenation the xanthine oxidase is activated by Ca2+-sensitive proteases, increasing ROS 
production [84]. Also, under oxidative stress conditions, Ca2+ is induced by ROS to influx into the cytoplasm and 
then influx into the mitochondria via mitochondrial Ca2+ uniporter, resulting in the opening of MPT, the collapse 
of mitochondrial membrane potential, and release of apoptotic signaling molecules such as cytochrome c and 
apoptosis-inducing factor (AIF) from the intermembrane space [85-88]. 

After 30–60 min of reperfusion, a gradual recovery of Ca2+ excretion and ATP-dependent Ca2+ reuptake in 
sarcoplasmic reticulum (SR) takes place, and the cells return to normal homeostasis. This ischemia-reperfusion 
process makes the intracellular Ca2+ concentration dual peaked [89], with one peak occurring at 15–60 min after 
the onset of index ischemia and the other peak occurring within 30 min of reperfusion [38]. 

Experimental studies have shown that pharmacologic antagonists of the sarcolemmal Ca2+ channel [90] or the 
mitochondrial Ca2+ uniporter [91], administered at the onset of myocardial reperfusion, reduce MI size by up to 
50%. However, clinical studies of calcium channel blockers administered at the onset of myocardial reperfusion 
have not shown beneficial results [92]. 
 

2.5. pH Paradox and MTP Opening 
Once the reperfusion has started, the previously lowered pH is rapidly restored by the washout of lactate, the 

activation of the Na+/H+ exchanger and the Na+-HCO3
- symporter. This can contribute to lethal reperfusion 

injury, and is termed the pH paradox [93]. This effect may be mediated by the opening of the MPT, which is a 
non-selective channel of the inner mitochondrial membrane that is closed under physiological conditions [94]. 
During ischemia, the susceptibility of the MPT is increased, but the pore remains closed when the pH is low. 
However, when pH is rapidly recovered, the neutralization of the acid media triggers the actual MPT opening, thus 
allowing passage through the inner mitochondrial membrane of molecules >1.5 kDa, leading to uncoupled 
oxidative phosphorylation and disrupting ATP production [95]. To date, the molecular nature of the MPT is still 
unclear [96]. Moreover, preventing MPT opening at the time of reperfusion by administering MPT inhibitors 
(such as the immunosuppressant cyclosporin A) at the onset of myocardial reperfusion has been reported in 
experimental studies to reduce infarct size by 40%–50% in small and large animal models [97-100]. However, in 
clinical studies, delaying the restoration of physiologic pH during myocardial reperfusion using Na+/H+ exchange 
inhibition did not protect the heart [41, 101]. 
 

2.6. Inflammation 
It is unclear whether the inflammatory response that accompanies an AMI contributes to the pathogenesis of 

myocardial LRI or whether it is a reaction to the acute myocardial injury [102]. Nevertheless, it has been reported 
the release of chemoattractant draws neutrophils into the infarct zone during the first 6 hours of myocardial 
reperfusion, and during the next 24 hours they migrate into the myocardial tissue. These neutrophils cause 
vascular plugging and release degradative enzymes, along with ROS [7, 102].  

The association between high ROS production and inflammation is mediated by the pro-inflammatory 

transcription factor, nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), which is sensitive to 

the redox state. High oxidative stress induces the separation of NF-κB from the NF-κB-IκB complex. Thus, NF-κB 
alone translocates into the nucleus, where it interacts with the genome and stimulates the expression of genes for 
inflammatory cytokines, leading to the initiation of the inflammatory response [103].  

Finally, through the ischemia and reperfusion models of multiple organs, Toll-like receptors have been 
demonstrated to play an important bridging role in the interaction between oxidative stress and inflammatory 

response [104]. It is thought that ROS up-regulates IL-1β through the NLRP3 inflammasome activation and 
caspase-1 expression [105]. It was demonstrated that thioredoxin-interacting protein mediated NLRP3 
inflammasome activation in cardiac microvascular endothelial cells was a novel mechanism of MI/RI [106]. 
 

3. Therapeutic Focus for Myocardial Reperfusion Injury 
In patients with AMI, the opportunity to intervene is limited between the onset of myocardial ischemia and the 

time of myocardial reperfusion. However, therapeutic targeting of the individual components of myocardial LRI, 
including oxidative stress, calcium overload, pH correction, and, more recently, inflammation have produced 
disappointing results [107, 108]. Nevertheless, there have been emerging therapeutic strategies for preventing 
myocardial LRI in the last years. 

The concept of "ischemic conditioning” includes several endogenous cardioprotective strategies, applied either 
directly to the heart (ischemic preconditioning or post-conditioning) or to another region of the body, for example 
a limb (remote ischemic preconditioning, preconditioning or post-conditioning [109, 110]. In this regard, ischemic 
preconditioning (IPC) is one of the most potent cardioprotective strategies against IRI, originally described by 
Murry, et al. [111]. Sub-lethal amounts of ROS can serve as a trigger for IPC by functioning as signaling 
messengers to protect against LRI. In the early phase of IPC, post-translational modification of redox-sensitive 
proteins provides cardioprotective signal transduction pathways [53]. On the other hand, the late phase of IPC is 
mediated by cardioprotective gene expression, like hypoxia-inducible factor 1 (HIF-1), which generates low 
amounts of mitochondrial ROS that is going to act as intracellular signals [112]. Although the molecular 
mechanism triggered by HIF that leads to sub-lethal ROS accumulation remains unknown [53], it has been 
hypothesized that HIF-induced pathways seem to converge on Akt activation and inhibition of MTP opening 
[113-116].  

In parallel to ischemic conditioning, there are many drugs that can reduce myocardial IRI, mainly based on 
their antioxidant capacity. 
 

3.1. Ascorbic Acid 
Vitamin C (Vit C), ascorbic acid or ascorbate is a water-soluble antioxidant agent that acts as a ROS scavenger. 

Oral ingestion of fruits, vegetables or supplements is the primary route of administration for Vit C [117]. 
Although low plasma concentrations are achieved, between 100 µmol/L or 150 µmol/L with food intake and 



Journal of Life Sciences Research, 2022, 9(1): 1-13 

6 
© 2022 by the authors; licensee Asian Online Journal Publishing Group 

 

 

supplementation, intravenous injection of ascorbate has been reported to lead to concentrations reaching 25 to 30 
mmol/ L in plasma [118]. However, its intracellular levels and plasma levels do not always have a correlation in 
cells other than red blood cells, since ascorbate tends to accumulate within the cell [35].  

Due to its properties, Vit C can be found in two states: the reduced form, ascorbic acid, and the oxidized form, 
dehydroascorbic acid (DHA) [119]. SVCT1 and SVCT2 are the Na+-dependent Vit C transporters, responsible for 
entering ascorbic acid into the cell [120], while the glucose transporters GLUT1, GLUT3, and GLUT4 are 
responsible for the DHA entry [119]. All three types of glucose transporters are expressed in the myocardium 
[35]. Vit C antioxidant potential is explained by its ability to donate electrons, being oxidized to DHA. Later it 
returns to its reduced form after being used by the cell [121].  

By acting as an electron donor, ascorbic acid generates ascorbyl radical, and it is capable of being oxidized by 
acting as an antioxidant or enzymatic cofactor [121]. So it is now accepted that Vit C together with glutathione 
constitute the primary cellular defenses against ROS production [122]. In this regard, it has been shown an 
inverse correlation between Vit C plasma concentration and products of oxidative damage to DNA, proteins and 
lipids in healthy adult nonsmoking population [123]. In another study where oxidative and antioxidant parameters 
were evaluated in patients with AMI before and after reperfusion, it was found that the activity of the antioxidant 
enzyme SOD decreased, while the activity of the oxidant enzyme XO increased in conjunction with the marker of 
lipid peroxidation malondialdehyde (MDA) after thrombolysis. Patients who were supplemented with post-
reperfusion oral Vit C showed improvements in these parameters to almost normal levels [124]. Also, in another 
IRI model, it has been reported that Vit C administered after the reperfusion decreases lactate dehydrogenase 
(LDH) levels in blood, as a marker of oxidative stress [125]. In addition, a significant decrease in hydroperoxides 
concentration at 48 hours post reperfusion [126] and a decrease in 8-isoprostanes after 6–8-hour post reperfusion 
[127], has been described following the administration of Vit C. The results of several studies [128-130] have 
shown a significant decrease in the levels of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative damage to DNA, 
post reperfusion and administration of Vit C. In the same way, the treatment with Vit C caused a significant 
decrease in 8-iso-prostaglandin F2 alpha at 6-8 hours after reperfusion [128], that is, it decreased the peroxidation 
of arachidonic acid in lipid membranes. 

Vitamin C must reach a plasma concentration of 10 mml/L to displace the reaction of the O2
∙-radical with NO, 

which acts at a rate 105 times faster than the reaction between ascorbic acid and the superoxide anion radical [35, 
131]. But when it has been administered at higher concentrations prior to reperfusion, no significant improvements 
have been observed in reducing the infarct size [132]. However, there are few studies of Vit C in human IRI 
models, so the results are not conclusive. Other limitations of the current evidence are the lack of consideration of 
basic aspects such as the mechanistic approach of the drug and its pharmacokinetic properties [133, 134]. 

Although the administration of Vit C improves the total antioxidant capacity at 48 hours after reperfusion, it 
has been observed that the GSH/GSSG ratio decreased significantly in the groups supplemented with Vit C [127, 
132]. Likewise, in a setting of myocardial IRI, Vit C at high doses could activate the Fenton reaction due the iron 
overload and acting as a pro-oxidant species [74]. 

In addition to these results, it has been described multiples antioxidant effects of Vit C: 

i. Synergistic effects with vitamin E (Vit E), ascorbic acid recycles 𝛼-tocopherol (α-TOH) into lipid bilayers 
and erythrocytes [35]. Also, in conjunction with Vit E, Vit C is able to up-regulate eNOS activity [135]. 

ii. Decrease in ROS production by the down-regulation of NOX enzymes activity [136]. 

iii. Suppression in NF-𝜅B activation induced by tumor necrosis factor α (TNF-α) [137]. 
iv. It prevents the oxidation of BH4, cofactor of NOS, thus avoiding uncoupled eNOS function and O2∙- 

overproduction [35]. 
 

3.2. Vitamin E 
Vit E is a group of fat soluble molecules, known as one of the most potent antioxidants, among which α-TOH 

stands out as one of the most active forms [74]. α-TOH is the major peroxyl radical scavenger in biological lipid 
membranes [138, 139], because it acts like a lipid based free radical chain-breaking molecule, thereby inhibiting 

lipid peroxidation through its own conversion into an oxidized product, 𝛼-tocopheroxyl radical [35]. To restore 

the α-TOH, the 𝛼-tocopheroxyl radical is reduced by redox-active molecules such as Vit C or ubiquinol [140]. If 

the 𝛼-tocopheroxyl radical is not reduced, it can react with lipids and generates lipid radical compounds, producing 

damage to the lipid membranes. Therefore, to have a beneficial therapeutic effect, the α-TOH requires co-
antioxidants such as Vit C [141].  

The cardioprotective effect of Vit E has been described previously in a study, showing that higher α-TOH 
baseline serum concentration is associated with a decreased risk overall and causes specific mortality for 

cardiovascular and heart diseases [142]. In IRI animal models, the α-TOH reduces infarct size and preserved 
cardiac function, in association with lower neutrophil infiltration locally in the ischemic myocardium and increases 
in anti-inflammatory monocyte function [143]. Furthermore, it has been reported positive effects in clinical studies 
of revascularization surgeries of the lower extremities [144], kidney transplantation [145], liver surgery [146], 
and aortic aneurysm repair [147]. In parallel, preoperative administration of Vit E has proven to exert beneficial 
effects on liver surgery by reducing the impact of IRI [148]. 

Besides its role as ROS scavenger, Vit E has been associated with increased GSH-Px activity [35] and 
decreased ROS production via down-regulation of NOX enzymes [136]. In addition, Vit E also has anti-

inflammatory effects by inhibiting the transcriptional activity of NF-𝜅B, that contributes to diminish the 
proinflammatory gene expression [149]. 
 

3.3. N‐Acetylcysteine 
N-acetylcysteine (NAC) is an acetylated cysteine compound that acts as a blood antioxidant reserve. It could 

prevent the reduction of GSH/GSSG ratio during exposure to ascorbic acid by behaving as a GSH donor when it is 
oxidized to DHA [74].  
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In ischemia-reperfusion rat models it has been demonstrated that the administration of NAC by continuous 
infusion before, during and after reperfusion produced a smaller infarct size compared to the control group. 
However, this effect did not occur when NAC was administered as an intravenous bolus at the same dose [150]. 
Also, the results of a clinical trial showed a decrease in the incidence of postoperative atrial fibrillation in patients 
undergoing coronary artery bypass and valve surgery treated with intravenous infusion of NAC, before and after 
surgery [151].  

Since co-administration of a GSH donor with Vit C shows a synergistic protective effect on infarct size in an 
isolated rat heart IRI model [152], it has been postulated that reinforcement antioxidant defenses with a GSH 
donor such as NAC could prevent the decrease in GSH and the reduction of the GSH/GSSG ratio during the 
administration of high doses of ascorbic acid to control burst of ROS in the reperfusion phase of AMI treatment 
[135]. 

 

3.4. Deferoxamine 
Deferoxamine (DFO) is a Food and Drug Administration (FDA) approved drug to treat either acute or chronic 

iron overload and it has a well-defined role as an iron chelator [153]. His effects in myocardial IRI are based on the 
increase in free iron during ischemic phase due media acidification, which promotes the mobilization of iron from 
intracellular ferritin. In the same way, once the reperfusion is onset, even if the iron levels decrease, the O2∙- 
contributes to more mobilization of iron from ferritin [135]. In fact, elevated serum FT levels is an important risk 
factor for developing AMI in middle-aged men without prior coronary artery disease [154]. Therefore, under 
conditions of oxidative stress, the LIP can react to produce ∙OH in Fenton and Haber-Weiss reactions [74], as 
previously described.  

The use of iron chelators at the onset of reperfusion has been proved to improve cardiac function relative to the 
control group [155]. Furthermore, when isolated and perfused rabbit cardiomyocytes are treated with DFO 
during ischemia and reperfusion, it has been associated with greater functional and metabolic recovery of the 
myocardium, as well as a reduction in the generation of ROS induced by perfusion, compared to the control group 
[156]. Likewise, in IRI canine model, pretreatment with DFO before ischemia, but not at the beginning of 
reperfusion, significantly reduced infarct size and GSSG release in the coronary sinus during reperfusion [157]. In 
addition, a clinical trial of patients with STEMI submitted to coronary angioplasty shows that intravenous bolus 
administration of 500 mg of DFO immediately before surgery, followed by a 12-hour infusion to 50 mg/kg, 
significantly reduced plasma levels of F2-isoprostane after angioplasty compared to control group [158]. 

DFO could have a synergistic role with ascorbate, since the latter reduces Fe3+ to Fe2+, which is the substrate 
of the Fenton reaction that leads to higher ROS production. Therefore, besides the iron overload during 
reperfusion, a high dose of intravenous Vit C infusion could interact with Fe2+, enhancing the pro-oxidant effects of 
Vit C [135]. In this scenario, the use of iron chelators such as DFO could be considered in conjunction with Vit C 
antioxidant therapy in patients with myocardial IRI. 

In this regard, in an experimental sheep model it was shown that the combined use of ascorbic acid (1.5 g) and 
DFO (1 g) administered by intravenous infusion was protective against the development of ventricular arrhythmias 
induced by myocardial IRI, compared to the control group [159]. 

 

3.5. Polyphenols 
This group of bioactive molecules currently occurring in some foods have antioxidant and anti-inflammatory 

effects. In addition, they also exhibit anti-cardiac hypertrophy, anti-atherosclerosis, anti-diabetic and anti-apoptotic 
effects through different signaling pathways [160].  

According to the number of phenol rings and the elements that are attached to them, polyphenols can be 
classified into flavonoids and non-flavonoids. Flavonoids are present in plants, including vegetables and fruits, 
representing 2/3 of the total polyphenols ingested in the diet. The best known flavonoids are quercetin, catechin, 
and myricetin [160]. In this regard, a myocardial IRI model study in rats described a cardioprotective role of 
quercetin by preventing a decrease in the XDH to XO ratio [161]. 

On the other hand, the non-flavonoids are found in different citrus fruits and berries, coffee, olive and sesame. 
The most important non-flavonoids are phenolic acids, like resveratrol [160]. They have shown antioxidant and 

anti-inflammatory effects by reducing inflammatory markers, such as IL-1β, IL-8, monocyte chemoattractant 
protein (MCP-1), COX-2, and iNOS [162]. Particularly, resveratrol increases the expression and activity of eNOS 
due their capacity to enhance the serine 1177 residue phosphorylation, diminishing the endogenous eNOS inhibitor 
asymmetric dimethylarginine (ADMA) [163], and/or activating the AMP-activated protein kinase pathway in the 
cardiomyocyte [164].  

Finally, the polyphenol treatment can stimulate the cytochrome P450 system, enhancing the functional 
recovery in a reperfused heart after ischemia, due the diminishes in the production of free radicals [165]. Also, the 
polyphenols administration has been shown to have antiarrhythmic effects and minimize mitochondrial IRI [166]. 
In addition, it can preserve the integrity of endothelial cells by stimulating the endothelium-derived 
hyperpolarizing factor [167, 168] and increase coronary flow via endothelium-dependent relaxation [169] and 
directly promote NO production.  
 

4. Novel Perspectives and Conclusions 
In the light of the results of the available studies up to date, myocardial IRI appears as a pathophysiological 

entity without therapeutic solution in the clinical practice. However, oxidative stress plays a leading role in the 
process of cell death and inflammation after reperfusion. Therefore, it has been postulated that reinforcing 
antioxidant defenses prior to reperfusion could improve the clinical outcomes, as assessed by markers of oxidative 
stress, infarct size, and myocardial function.  

In this regard, the administration of Vit C at doses greater than 10 mml/L has proven to be safe, reducing 
markers of DNA damage and lipid peroxidation, as well as increasing the activity of the antioxidant enzyme SOD. 
Despite this, Vit C can act as a pro-oxidant species by reducing Fe3+ to Fe2+ and activating the Fenton reaction, 
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leading to a greater amount of ROS production. Furthermore, during ischemia and reperfusion of the 
cardiomyocyte, there is a greater mobilization of Fe2+from ferritin, which increases the LIP and ROS production. 

For these reasons, a novel antioxidant therapy has been proposed as a cardioprotective treatment in patients 
with AMI subjected to reperfusion. It consists in a continuous intravenous infusion of high doses of Vit C combined 
with NAC and DFO, administered before and during reperfusion. This would allow to optimize the positive 
antioxidant effects that have been described with each drug separately in IRI models. On the one hand, NAC will 
act as a GSH donor, preventing the reduction of the GSH/GSSH ratio as a result of the oxidation of ascorbate to 
DHA. In turn, DFO will decrease Fe2+ levels as LIP, decreasing the ROS production rate due to the Fenton 
reaction. Thus, the co-administration of these drugs is expected to have a synergistic behavior in avoiding the 
deleterious effects of Vit C. 

To date, more studies of combination therapy are needed in subjects with AMI who underwent reperfusion via 
thrombolysis or percutaneous angioplasty, since the favorable results of experimental studies have not been able to 
be transferred to the clinical setting. However, the novel treatment described would allow a safe therapy with low 
doses of each drug, being a potential alternative in the short or medium term for the management of ROS burst 
during reperfusion in patients with AMI.  
 
Abbreviations:  
ACSL4, acyl-CoA synthetase long-chain family member 4; AIF, apoptosis-inducing factor; AMI, acute myocardial 
infarction; ATP, adenosine triphosphate; CAT, catalase; CHD, coronary heart disease; CVDs, cardiovascular 
diseases; DHA, dehydroascorbic acid; DUOX-x, dual oxidase-; eNOS, endothelial nitric oxide synthase; FT, 
ferritin; Fe2+, ferrous iron; Fe3+, ferric iron; GSH, reduced glutathione; GSH-Px, glutathione peroxidase; HIF-1, 
hypoxia-inducible factor 1; H2O2: hydrogen peroxide.  IMI, ischemia-reperfusion injury; iNOS, inducible nitric 
oxide synthase; IPC, ischemic preconditioning; LDH, lactate dehydrogenase; LIP, labile iron pool; LRI, lethal 
reperfusion injury; MCP-1, monocyte chemoattractant protein; MDA, malondialdehyde; mETC, mitochondrial 
electron transport chain; MPT, mitochondrial permeability transition pore; MVO, microvascular obstruction; 

NADPH, Nicotinamide Adenine Dinucleotide Phosphate; NF‐κβ, nuclear factor kappa‐light‐chain‐enhancer of 
activated B cells;  nNOS, neuronal nitric oxide synthase; NO, nitric oxide; NOX, NADPH oxidases; ONOO-, 
peroxynitrite; OH, hydroxyl radical; O2∙-, superoxide anion; ROS, reactive oxygen species; SERCA, 

sarcoendoplasmic reticulum Ca2+‐ATPase;  SOD, superoxide dismutase;  STEMI, ST-segment elevation 
myocardial infarction; SR, sarcoplasmic reticulum; Vit E, vitamin E.; Vit C, vitamin C; XDH, xanthine 

dehydrogenase; XO, xanthine oxidase; α-TOH, 𝛼-tocopherol. 
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