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1. Introduction 
Nanostructural  materials becomes attractive than the bulk materials due to their small size and surface activity. 

So, there has been considerable interest in fabrication of low-dimensional nano-sized materials such as nano-wires, 

nano-rods and nano-tubes because they possess distinctive geometries, novel physical , chemical properties and have 

potential applications in nanotechnology [1-8]. Many of the applications of new nano materials that have different 

properties from the bulk large sizes. 

Rheumatoid arthritis is one of the common disease caused by muscle and articulations inflammation [7-9]. 

Treatment with tenoxicam can be used for this case. Complexation with metal ions improved the efficieny of drugs 

[10-15].  

Transmission electron microscopy (TEM) is good tool for measuring the nano materials sizes. It is a vital 

characterization tool for directly imaging nanomaterials to obtain quantitative measures of particle and/or grain size, 

size distribution, and morphology. TEM images are very sensitive. By using (TEM) , we can investigate the size and 

the shape of ceftazidime antibiotic which had been found under nanoscale range. 

The study of the interactions involved in the complexation of different cations with ligand in solvent mixtures is 

important for a better understanding of the mechanism of biological transport, molecular recognition, and other 

analytical applications. Recently, there has been much research on complex formation. There are a number of 

physico-chemical techniques that can be used in the study of these complexation reactions, for example, 

spectrophotometry, polarography, NMR spectrometry, calorimetry, potentiometry and conductometry [16]. 

Conductometric measurements are good tool for studying solution complexation. This is because conductometric 

techniques are highly sensitive and inexpensive, with a simple design of experimental arrangement for such 

investigations [17]. Therefore, it offers useful data than other methods.  

Nanoparticles are very important for medicine and environment, because of their 

increased behaviours. The increasing in the physical and chemical properties of 

nanomaterials are due to theirs high surface area and small volume, makes them very 

reactive , catalytic and able to pass through cell membranes. Characterization of nano-

CuCl2 is done by using a variety of different techniques, transmission electron 

microscopy (TEM), infra red spectroscopy (IR) and determination of its thermodynamic 

parameters using condutometric measurements. The association parameters of both bulk 

and nano-CuCl2 salts in DMF were easily calculated using using Fuoss-Shedlovsky 

method from temperatures, 298.15K (degree Kelvin) to 313.15K. In order to have a 

better understanding of thermodynamics of the complexation reactions between (bulk, 

nano-CuCl2) salts and tenoxicam in DMF, it is useful to determine the contribution of 

enthalpy and entropy of the reactions. The thermodynamic parameters were calculated 

from the temperatures dependence of the complexation constants ( Van't Hoff plot). The 

formation constants were measured as a function of temperature and increased by 

increasing temperature. Also, different volumes of tenoxicam in mixed (DMF+H2O) 

were determined from density measurement. 
 
     Keyword: CuCl2, Tenoxicam, Transmission electron microscopy (TEM), Fuoss –Shedlovsky method, Association and 

formation constants, Thermodynamic parameters. 
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Among numerous thermodynamic properties, partial and apparent molar volumes of ions in solution are 

particularly useful in understanding the solvation as well as the complexes formation processes. They can be 

estimated accurately and they provide important information about (solute–solvent) interactions in solution. A great 

effort has been made in past years to perform such research and collect the respective data.  

 

2. Experimental  
2.1. Chemicals and Ligand 

- Copper chloride (CuCl2.2H2O) was provided from Merck Co. while nano-CuCl2 salt was prepared by ball 

milling method using copper chloride salt. The ball milling was a Retsch MM 2000 Swing mill with 10 cm
3
 stainless 

steel, double-walled tube. Two balls (stainless steel) with diameter of 12 mm were used. Ball milling was performed 

at 20225 Hz and shaking were used for 30 min, usually at room temperature without circulating liquid and the 

temperature did not rise above 30 
◦
C.  

 

- Tenoxicam (E.I.P.I.CO.) was used as purchased and investigated under transmission electron microscopy 

(TEM). 

 

Tenoxicam 

 
Formula C13H11N3O4S2 

Mol. Wt. 337.376g/mol 

- Dimethylformamide solvent (DMF) was provided from El Nasr pharmaceutical chemicals co and used directly 

without purification. 

 

2.2. Experimental  

2.2.1. Transmission Electron Microscopy (TEM) Images 
Transmission electron microscope is a special kind of electron microscope for imaging of different objects. In 

contrast to other microscopes the electrons in TEM pass through and interact with atoms of the sample. Due to this 

interaction the electrons are being scattered. The final image is very complicated interference patten of incident and 

diffracted beams. 

 

2.2.2. Condutometric Measurements 

A solution of bulk and nano-CuCl2 (10
-4

 M) was placed in a titration cell, thermostated at a given temperature 

and the conductance of the solution was measured. The ligand (10
-3

M) (tenoxicam) was transferred step by step to 

the titration cell using a precaliberated micropipette and the conductance of the solution was measured after each 

transfer. The addition of the ligand solution was continued until the total concentration of the ligand was 

approximately four times higher than that of the metal ions. The conductance of the solution was measured by 

titration of ligand with metal salt. The complex formation constant Kf, and the molar conductance of the complex 

ML, were evaluated by computer fitting to the molar conductance mole ratio data. The temperatures used are 

(298.15, 303.15, 308.15 and 313.15K). The specific conductivity Ks was achieved by using a conductivity bridge of 

the type (OAKTON WD-35607-10,-20,-30) with platinum  electrode and a cell constant equal (1). The solutions 

were put in ultra-thermostat of the type (Kottermann 4130) during measurements. 

 

2.2.3. Density Measurement 
Weighting bottle (1ml of pyknometeric type) was used for measuring the density of mixed (DMF+H2O)  at 

298.15K, weighing using four digital weighing balance of the type Mettler AE 240. 

Also, the density of the solution of tenoxicam in mixed (DMF+H2O) was measured at temperature 298.15K by 

the same method. The experiment was repeated at least three times and then the mean absolute density was taken. 

The maximal error was to be ± 0.001 gm. 

 

3. Data Results and Discussion 
3.1. Transmission Electron Microscopy (TEM) Images 

The photographs from (TEM) are presented for nano-CuCl2 salt and tenoxicam were shown in (Fig. 1 and Fig. 2) 

respectively. It was observed from TEM images that:- 

- Nano-CuCl2 particles appear as sheets in scale range 100 nanometers.  

- Tenoxicam particles appear with size range between (37.14: 43.40) nm in scale range 200 

nanometers. 

 

3.2. Conductometric Results 
The stability of a transition metal complex with a polydentate chelate ligand depends on a range of factors 

including the number and the type of the donar atoms presented, the number and the size of chelate rings formed on 

http://en.wikipedia.org/wiki/File:Tenoxicam_e.png
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Sulfur
http://en.wikipedia.org/wiki/Gram
http://en.wikipedia.org/wiki/Mole_(unit)
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the complexation [18]. In addition, the stability and the selectivity of the complexities are strongly depend on the 

donor ability and the dielectric constant of the solvent [19], the shape, the size of the solvent molecules [20]. 

Tenoxicam, [4-hydroxy - 2 - methyl -N-2- pyridinyl - 2H - thieno -[2,3e]1,2-thiazine-3-carboxamide-1,1-

dioxide] is a non-steroidal anti-inflammatory drug (NSAID). It is very effective as analgesic and anti-inflammatory 

drug for the systemic treatment of rheumatoid arthritis, osteoarthritis and other joint diseases. However, being a 

lipophilic drug, tenoxicam is sparingly soluble in water, so that its dissolution may be the rate determining step in the 

absorption process. 

 

A- Calculation of Thermodynamic Parameters of Association for Bulk and Nano-CuCl2 in DMF. 

The specific conductance values (Ks) of different concentrations for bulk and nano-CuCl2 in DMF were 

measured experimentally in absence of ligand at different temperatures (298.15, 303.15, 308.15 and 313.15K). The 

molar conductance (Λm) values were calculated [21, 22] using equation (1): 

( ) 1000s solv cell
m

K K K

C

 
 

              (1) 

 

Where  Ks and Ksolv  are  the specific conductance of the solution and the solvent, respectively; Kcell is the cell 

constant and C is the molar concentration of the bulk and nano-CuCl2 solutions. 

The limiting molar conductances (Λo) at infinite dilutions were estimated for bulk and nano-CuCl2 in DMF in 

absence of ligand at different temperatures by extrapolating the relation between Λm and Cm
½
 to zero concentration as 

shown in  Fig.(3). 

The experimental data for conductance measurements were analyzed using Fuoss – Shedlovsky [23] 

extrapolation techniques which follows equations :  
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                                  (3) 

he value of (Λ0) was used to calculate the Onsager slope (S) from the equation (4): 

                                     S = a0 + b                            (4) 

 

Where,                         a = 8.2 x 10
5
/(T)

3/2
                 (5) 

 

                                    b = 82.4/((T)
1/2 

                    (6) 

 

Where () is the dielectric constant of the solvent, (η0) is the viscosity of the solvent and (T) is the temperature. 

Using the values of () and (η0), the value of (S) were easily estimated. Using the data of (Λ), S(z) and (Λ0), the values 

of degree of dissociation (α) were calculated by using the following equation (7): 

( ) = ΛS(Z) / Λ0                                         (7) 

Using these () and () values, the mean activity coefficients (


) were evaluated by means of equation (8) :               

log  = - z- . z+ A(C)
1/2

 / [1+B r
o
(C)

1/2
)]                     (8) 

Where (z-, z+) are the charges of ions in solutions A, B are the Debye-Hückel constant. 

A = 1.824 X 10
6
 (T)

-3/2    
;  B = 50.29 X 10

8
 (T)

-1/2
   and (r

o
) is the solvated radius. 

The association constant (KA) is evaluated from equation (2). 

Using the values of association constant (KA), the values of the dissociation constant (KD) were easily calculated 

by means of the following equation (9): 

KD = 1/KA                                                  (9) 

 

The values of the triple ion association constant (K3) were calculated [24, 25] by using the equation (10): 
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Equation (11) was derived by Fuoss [25] and using Walden approximation  (Λ0= 3λ0).  

The values of free energy of association (∆GA) for bulk and nano-CuCl2 in DMF at different temperatures 

(298.15, 303.15, 308.15 and 313.15 K)were calculated [26, 27] from the association constant (KA) values by using 

equation (11). 

GA = - 2.303 RT log KA                           (11) 

Where R is the gas constant (8.314 J.mol
−1

 degree
−1

) and T is the absolute temperature. The calculated  values of  

η0, Λo, Λ , C, S, Z, S(Z),  
, KA, KD,  , K3and Gibbs free energies for the solutions of bulk and nano-CuCl2 in 

DMF at different temperatures (298.15, 303.15, 308.15 and 313.15K) were calculated and reported in Table.1 (a,b). 
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The enthalpy (ΔHA) for bulk and nano-CuCl2 in DMF at different temperatures were calculated by using Van't  

Hoff equation [28, 29]. 

Where R is the gas constant(8.314 J.mol
−1 

degree
−1

) and T is the absolute temperature.  

By drawing the relation between log KA and 1/T, ΔHA can be calculated from the slope of each line which equal 

(-ΔHA/2.303R) as shown in Fig.(4) .The entropy (ΔSA) for bulk and nano-CuCl2were calculated by using equation 

(12) [27-104]: 

ΔGA = ΔHA – TΔSA                                    (12) 

Where (S) is the entropy of system. 

The calculated values of (ΔHA) and (ΔSA) for bulk and nano-CuCl2are presented in Table(2). 

 

B- Calculation of Thermodynamic Parameters of Complex Formation for Bulk and Nano-CuCl2 with 

tenoxicam in DMF. 

The specific conductance values (Ks) of different concentrations of bulk and nano-CuCl2 in DMF were measured 

experimentally in the presence of ligand at different temperatures (298.15, 303.15, 308.15 and 313.15 K). The molar 

conductance (Λm) values were calculated [21, 22] using equation (1). 

By drawing the relation between molar conductance (Λm) for bulk and nano-CuCl2in presence of ligand at 

different temperatures and the molar ratio of metal to ligand [M]/[L] concentrations, Fig.(5) different lines are 

obtained with breaks indicating the formation of 1:2 and 1:1 (M:L) stoichiometric complexes ,as done in previous 

works [59, 84-91]. 

The formation constants (Kf) for bulk and nano-CuCl2complexes were calculated for each type of complexes 

(1:2) and (1:1) (M:L) by using equation (13) [30, 31]: 

and         (13) 

 

Where ΛM is the limiting molar conductance of the bulk and nano-CuCl2alone, Λobs is the molar conductance of 

solution during titration ,ΛML is the molar conductance of the complex and [L] is the ligand concentration. 

The Gibbs free energies of formation for each stoichiometric complex (ΔGf) were calculated by using the 

equation (14) [45-104]: 

ΔGf= - 2.303 RT log Kf                                  (14) 

 

The obtained values (Kf) for bulk and nano-CuCl2stoichiometric complexes and their calculated ΔGf values are 

presented in Tables.3 (a,b). 

By drawing the relation between log Kf and 1/T, different lines are obtained indicating the formation of  1:2 and 

1:1 (M:L) stoichiometric complexes Fig.(6) as explaines in previous works [58-86]. 

From the relation between log Kf and 1/T, ΔHf can be calculated for each type of complexes, from the slope of 

each line which equal (-ΔHf/2.303R). The entropy (ΔSf) for bulk and nano-CuCl2stoichiometric complexes were 

calculated [32, 33] for each type of complexes (1:2) and (1:1) (M:L) by using by using Gibbs-Helmholtz equation 

(15) [44-104]: 

ΔGf = ΔHf – TΔSf             (15) 

 

The calculated values of (ΔHf) and (ΔSf) for bulk and nano-CuCl2stoichiometric complexes are presented in 

Table.4 (a,b). 

 

3.3. Determination of Different Volumes of Tenoxicamin Mixed (DMF+H2O) at 298.15 K. 

The densities of different concentrations of tenoxicam ranging from 6x10
-4

 to 1x10
-3

 M were measured in mixed 

(DMF+H2O) at 298.15K then the molar volumes (Vm) of tenoxicam were obtained by dividing the molar mass of 

tenoxicam by the experimental densities as shown in equation (16).  

     
d

M
V

m
                  (16) 

Where:  M is the molecular weight of tenoxicam and (d) is the density of the used solutions 

 The  packing  density (P) for electrolytes as reported by Kim and Gomaa [34-44] and [59-84] , i.e. the 

relation between Van der Waals volume (Vw) and the molar volume (Vm) of relatively large molecules 

(M.Wt > 35) was found to be a constant value equals 0.661 as in equation (17).  

Packing density (P) for electrolytes = 

m

w

V

V
= 0.661  0.017                                           (17) 

The electrostriction volumes [45-51] (Ve) is the volume of solute which impressed by the solvent were calculated 

by using equation (18) [52] after Kim [53] and King [54].  

 

Ve = Vw  -Vm                                               (18) 

 

The apparent molar volumes VФ[47, 55] were  calculated by using equation (19) [56]:  
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Where M is the molar mass of tenoxicam and Cm is the molar concentration, d and do are the densities of 

tenoxicam and the solvent used, respectively.  
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The values of the Vm ,Vw , Ve  and VФ for tenoxicam in  mixed (DMF+H2O) are presented in Table (5-8) 

respectively.  

The partial molar volume (VФ
0
) was obtained by linear extrapolation of (VФ) against Cm to zero concentration as 

shown in Fig (7). The intercept of Masson relation [57], equation (20) gives ( ) Table (9). 

(20) 

Where  is the limiting value of the apparent molar volume which equals to the partial molar volumes. 

The proportionality constant Sv (the slopes of  vs. Cm relations), obtained from equation (20) are given in 

Table (10). 

 

4. Conclusion 
The association constants of both bulk and nano-CuCl2 salts in DMF were easily calculatedusing Fuoss-

Shedlovsky method. Also,the effect of temperature can be noticed from increasing in the negative values of the 

associating free energy (∆GA) as the temperature increased from 298.15 to 313.15 K. This indicates that ion-pair 

association is favored with lowering of dielectric constant of medium. Also, the negative value of (∆HA) indicates 

that ion association processes are exothermic in nature. A positive entropy change (∆SA) is explained on the 

assumption that iceberg structure around the cation is broken when association takes place leading to an increase in 

the degree of disorderliness. Positive ∆S values attributed to desolvation of both ions are also supported by the 

positive enthalpy values indicating a lack of covalent bonds. 

In order to have a better understanding of thermodynamics of the complexation reactions between (bulk, nano-

CuCl2) salts and tenoxicam in DMF, it is useful to determine the contribution of enthalpy and entropy of the 

reactions. The thermodynamic parameters were calculated from the temperatures dependence of the complexation 

constants (Van't Hoff plot). The formation constants were measured as a function of temperature and increased by 

increasing temperature. The formation constants and Gibbs free energies of different complexes in DMF at different 

temperatures follow the order: Kf (1:1) >Kf (1:2) for (M:L), and ∆Gf (1:1) > ∆Gf (1:2) for (M:L). Also, high positive 

values of (∆Hf) and (∆Sf) for (1:1) complex indicated that the stability of (1:1) complex is higher than (1:2) and more 

favor complex. 

Also, different volumes of tenoxicam in mixed (DMF+H2O) were determined to conclude that Van der Waals 

values (Vw) show the following order: 

(100% > 80% > 60% > 40% > 20%) DMF 

 

This indicated that the electronic cloud of the used compound is bigger in case of 100% DMF than the other 

percentages, due to more electrostatic interaction. 

All the partial molar volume ( ) values are negative showing high solvation effect of DMF on tenoxicam. All 

the evaluated SV values for solutions are positive in their values indicating the association behaviour in the used 

solvent. Consequently, these data can be used to facilitate their estimations. 
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Fig-1. TEM photograph ofNano-CuCl2 Fig-2. TEM photograph of Tenoxicam 

 

 
Fig-3. Variation of the molar conductance Λm (Ω−1.cm2.mol−1) with Cm½  for (a) bulk-CuCl2 and (b) nano-CuCl2 in DMF at (298.15, 

303.15, 308.15 and 313.15K). 

 

 

Fig-4.Variation of  log KA with l/T (K-1) of bulk-CuCl2and nano-CuCl2  in DMF. 
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Fig-5.Variation of the molar conductance Λm (Ω −1.cm2.mol−1) with [M]/[L] for (a) bulk-CuCl2 and (b) nano-CuCl2 with tenoxicam in DMF at 

(298.15, 303.15, 308.15 and 313.15 K). 

 

 

Fig-6. Variation of  logKf with l/T (K-1) of (a) bulk-CuCl2 and (b) nano-CuCl2  in presence of tenoxicamin DMF. 

 

Fig-7.Variation of apparent molar volume (VФ) with Cmof  tenoxicam in mixed (DMF+H2O) at 298.15K. 

 
Table-1(a). The values of viscosity (η0), limiting molar conductance (Λm), molar conductance (Λ),Fuoss-Shedlovsky parameters (S, Z and 

S(z)), activity coefficient (Ɣ ±), association constant (log KA), dissociation constant (KD), degree  of dissociation ( ), triple ion association 

constant (K3), Gibbs free energy of association (∆GA) for bulk-CuCl2 in DMF at different temperatures. 

Temp. 
102

o
 

(poise) 

Λm   S Z S(z)  ±   

 

103 KD 

 

105 K3 

 

Log KA  GA 

298.15 K 0.796 77.91 18.993 150.128 0.0150 1.0151 0.9467 0.2474 0.0182 8.049 4.739 -27.05 

303.15 K 0.777 95.02 27.851 163.396 0.0147 1.0148 0.9421 0.2974 0.0279 6.462 4.553 -26.43 

308.15 K 0.758 126.18 33.619 187.862 0.0121 1.0122 0.9444 0.2696 0.0222 7.211 4.653 -27.45 

313.15 K 0.738 131.44 36.997 196.357 0.0125 1.0126 0.9419 0.2850 0.0252 6.740 4.598 -27.57 

 o in (Ω−1.cm2.mol-1),   in (Ω−1. cm2.mol-1) and GA in (kJ mol-1). 
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Table-1(b). The values of viscosity (η0), limiting molar conductance (Λm), molar conductance (Λ),Fuoss-Shedlovsky parameters (S, Z and 

S(z)), activity coefficient (Ɣ ±), association constant (log KA), dissociation constant (KD), degree  of dissociation ( ), triple ion association 

constant (K3), Gibbs free energy of association (∆GA) for nano-CuCl2 in DMF at different temperatures. 

Temp. 
102

o
 

(poise) 

Λm   S Z S(z)  ±   

 

103 KD 

 

105K3 

 

Log KA  GA 

298.15 K 0.796 146.83 40.952 196.936 0.0112 1.0112 0.9432 0.2820 0.0246 6.809 4.608 -26.30 

303.15 K 0.777 151.92 44.866 201.751 0.0114 1.0114 0.9420 0.2987 0.0282 6.348 4.549 -26.40 

308.15 K 0.758 155.56 51.458 207.829 0.0121 1.0122 0.9382 0.3348 0.0370 5.460 4.430 -26.14 

313.15 K 0.738 184.01 55.661 232.704 0.0109 1.0110 0.9399 0.3058 0.0297 6.130 4.526 -27.13 

 o in (Ω−1.cm2.mol-1),   in (Ω−1. cm2.mol-1) and GA in (kJ mol-1). 

 

Table-2. Gibbs free energy of association (ΔGA), enthalpy change (ΔHA) and entropy change (ΔSA) for bulk CuCl2 

and nano-CuCl2 in DMF at different temperatures. 

Temp(K) ΔGA (kJ mol-1) ΔHA(kJ mol-1) ΔSA(J mol-1K-1) 

 

 

298.15 

303.15 

308.15 

313.15 

Bulk 

CuCl2 

Nano 

CuCl2 

Bulk 

CuCl2 

Nano 

CuCl2 

Bulk 

CuCl2 

Nano 

CuCl2 

-27.05 

-26.43 

-27.45 

-27.57 
 

-26.30 

-26.40 

-26.14 

-27.13 
 

-11.65 

 

-13.20 

 

0.0516 

0.0487 

0.0512 

0.0508 
 

0.0439 

0.0435 

0.0419 

0.0445 
 

 
Table-3(a). Molar conductance of complex (ΛmL), formation constants (log Kf) and Gibbs 

free energies of formation (ΔGf) for 1:2 and 1:1 (M/L) of bulk-CuCl2 with tenoxicam in 

DMF at (298.15, 303.15, 308.15 and 313.15 K). 

Complex ratio(M:L) Temp. (K) log Kf ΔGf 

(1:2) 

298.15 

303.15 

308.15 

313.15 

2.5740 

2.7173 

2.8908 

2.8940 
 

-14.694 

-15.772 

-17.056 

-17.352 
 

(1:1) 

298.15 

303.15 

308.15 

    313.15 

3.1075 

3.2506 

3.3730 

3.5942 
 

-17.739 

-18.868 

-19.901 

-21.550 
  

 
Table-3(b). Molar conductance of complex (ΛmL), formation constants (log Kf) 

and Gibbs free energies of formation (ΔGf) for 1:2 and 1:1 (M/L) of nano-CuCl2 

with tenoxicam in DMF at (298.15, 303.15, 308.15 and 313.15 K). 

Complex ratio(M:L) Temp. (K) log Kf ΔGf 

(1:2) 

298.15 

303.15 

308.15 

313.15 

2.5946 

2.6248 

2.7223 

2.7772 
 

-14.811 

-15.235 

-16.062 

-16.651 
 

(1:1) 

298.15 

303.15 

308.15 

    313.15 

3.0534 

3.1391 

3.2433 

3.3028 
 

-17.431 

-18.221 

-19.136 

-19.803 
 

 
Table-4(a). Gibbs free energy of association (ΔGf), enthalpy change (ΔHf) and entropy change (ΔSf) for bulk-CuCl2 with tenoxicam 

in DMF at different temperatures. 

Temp. (K) ΔGf(kJ mol-1) ΔHf(kJ mol-1) ΔSf  (J mol-1K-1) 

 

 

 

    293.15 

298.15 

303.15 

308.15 

(1:2) Complex (1:1)  Complex (1:2) Complex (1:1) Complex (1:2) Complex (1:1) Complex 

-14.694 -18.168 

 -15.772 -18.840 

 -17.056 -19.238 

 -17.352 -19.344 

 
 

-17.739 

-18.868 

-19.901 

-21.550 
  

40.676 

 

56.484 

 

0.1857 

0.1862 

0.1873 

0.1853 
 

0.2489 

0.2485 

0.2478 

0.2491 
  

 
Table-4(b). Gibbs free energy of association (ΔGf), enthalpy change (ΔHf) and entropy change (ΔSf) for nano-CuCl2 with tenoxicam 

in DMF at different temperatures. 

Temp. (K) ΔGf(kJ mol-1) ΔHf(kJ mol-1) ΔSf  (J mol-1K-1) 

 

 

 

      293.15 

298.15 

303.15 

308.15 

(1:2) Complex (1:1) Complex (1:2) Complex (1:1) Complex (1:2) Complex (1:1) Complex 

-14.811 -14.811 

 -15.235 -15.235 

 -16.062 -16.062 

 -16.651 -16.651 

 
 

-17.431 

-18.221 

-19.136 

-19.803 
 

23.040 

 

30.501 

 

0.1269 

0.1262 

0.1268 

0.1267 
 

0.16076 

0.16072 

0.16108 

0.16064 
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Table-5. The molar volumes (Vm) of  tenoxicam in mixed (DMF+H2O) at 298.15K. 

Molar Volume (Vm) Concentration 

 100 % 80 % 60 % 40 % 20 % 

37.49039 36.09071 35.46473 35.00114 34.94676 0.001 

33.49643 31.77397 31.762 31.3955 31.30519 0.000909 

30.4656 28.66406 28.59603 28.08658 28.1663 0.000833 

27.7996 26.01403 26.09855 25.49312 25.61506 0.000769 

25.54137 24.0245 23.98862 23.46311 23.44843 0.000714 

23.60428 22.6093 22.07236 22.09693 21.86352 0.000667 

 
Table-6. The Van der Waal'svolumes(Vw) of  tenoxicam in mixed (DMF+H2O) at 298.15K. 

Van der Waal's Volume (Vw) Concentration 

 100 % 80 % 60 % 40 % 20 % 

24.78115 23.85596 23.44219 23.13575 23.09981 0.001 

22.14114 21.00259 20.99468 20.75242 20.69273 0.000909 

20.13776 18.94694 18.90198 18.56523 18.61793 0.000833 

18.37554 17.19528 17.25114 16.85095 16.93156 0.000769 

16.88285 15.88019 15.85648 15.50911 15.49941 0.000714 

15.60243 14.94475 14.58983 14.60607 14.45179 0.000667 

 
Table-7. The electrostatic volumes(Ve) of  tenoxicam in mixed (DMF+H2O) at 298.15K. 

Electrostatic Volume (Ve) Concentration 

 100 % 80 % 60 % 40 % 20 % 

-12.7092 -12.2348 -12.0225 -11.8654 -11.847 0.001 

-11.3553 -10.7714 -10.7673 -10.6431 -10.6125 0.000909 

-10.3278 -9.71712 -9.69406 -9.52135 -9.54838 0.000833 

-9.42407 -8.81876 -8.84741 -8.64217 -8.68351 0.000769 

-8.65853 -8.1443 -8.13214 -7.95399 -7.94902 0.000714 

-8.00185 -7.66455 -7.48253 -7.49086 -7.41173 0.000667 

 
Table-8. The apparent molar volumes(Ve) of  tenoxicam in mixed (DMF+H2O) at 298.15K. 

Apparent Molar Volume ( ) Concentration 

 
100 % 80 % 60 % 40 % 20 % 

-9.04E+05 -8.37E+05 -7.73E+05 -7.31E+05 -6.91E+05 0.001 

-1.01E+06 -9.35E+05 -8.63E+05 -8.16E+05 -7.72E+05 0.000909 

-1.11E+06 -1.03E+06 -9.52E+05 -9.01E+05 -8.53E+05 0.000833 

-1.21E+06 -1.13E+06 -1.04E+06 -9.87E+05 -9.34E+05 0.000769 

-1.31E+06 -1.22E+06 -1.13E+06 -1.07E+06 -1.02E+06 0.000714 

-1.42E+06 -1.32E+06 -1.22E+06 -1.15E+06 -1.09E+06 0.000667 
 

Table-9. The intercept of  Masson relation (VФ
0). 

% (DMF+H2O)  (106) 

20 % -1.877 

40 % -1.974 

60 % -2.082 

80 % -2.243 

100 % -2.409 

 
Table-10.The proportionality constant Sv. 

% (DMF+H2O) Sv (109) 

20 % 1.206 

40 % 1.264 

60 % 1.331 

80 % 1.428 

100 % 1.531 
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