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Abstract 

Oxybenzone, one of the most often detected pharmaceuticals and personal care products (PPCPS),  
from aqueous solutions and this PPCPs removal from water had been studied by using the highly 
porous metal-organic framework (MOF) ) MIL-101(Cr) and a modified MIL-101(Cr) called MIL-
101-OH. Adsorption results showed that MIL-101-OH which contains functional group such as –
OH, which was very effective for oxybenzone adsorption. The adsorption performance of MIL-
101-OH over MIL-101-OH was found to be greater than that of MIL-101(Cr), which means the 
functionalization of primitive MOFs have a positive effect on adsorption. The kinetics of MIL-
101-OH also showed higher result compare to MIL-101(Cr). So along with a high adsorption 
capacity and repaid adsorption which is important for commercial applications.  
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1. Introduction 
The use of pharmaceuticals and personal care products (PPCPS) is increasing day by day because of the 

increasing population all over the world, urbanization and living standards. For example the presence of PPCPs is 
already detectable in surface water, as in ground water [1-3] and bioaccumulation of these persistent PPCPs in the 
aquatic life will become a threat to the environment [4, 5]. PPCPs may often remain in the environment even after 
they have been consumed completely [3, 6-10] because PPCPs usually have long shelf lives to meet customer’s 
demands, and some PPCPs are inadvertently dumped into environment; therefore, PPCPs are typical examples of 
so-called emerging contaminants [9, 10]. Oxybenzone (the structure of which is shown in scheme 1) is a 
component of many sunscreen lotions, is regarded as typical emerging contaminants with high environmental risk. 
The chemical structure of oxybenzone has various functional groups such as phenol, ketone groups that can 
interact effectively with adsorbents such as modified / functionalized MOFs.                     

 

 
(2-Hydroxy-4-methoxyphenyl)-phenylmthanone [C14H12O2] 

Scheme-1. Chemical structure of Oxybenzone 
 
Over last few decades, significant advancements have been achieved in the field of porous materials because of 

the development of new functional materials, including metal-organic frameworks (MOFs) [11-19]. MOFs are 
receiving much attentions because of their high porosity, with their pore size/shape being controllable over both 
microporous and mesoporous regions. The physiochemical properties of MOF materials can be turned with easy 
modifications or functionalization, which ultimately increases their usability in various applications, such as 
adsorption [20-22]  separation [23] and catalysis [24] For example MOFs have recently been successfully used 
for fuel purification via adsorptive desulfurization [25-27] or denitrogenation [28-30]. MOFs have also been used 
for the aqueous-phase adsorption of different pollutants in water, such as heavy metals [31] phosphate [32] 
organics dyes [33-36] organic arsenic acids [37, 38] bisphenol-A [39, 40] and PPCPs (naproxen and clofibric 

acid) ) [41-43] from water. In this study, we used MIL-101, MIL-101-OH and Oxybenzone as representatives 
MOF and PPCP, respectively.  

 

2. Experimental 
2.1 Chemicals and Synthesis and Modification of Adsorbent 

Reagents and solvents were commercially available products and used without any further purification. 
Chromium (III) nitrate nanohydrate (Cr(NO3)3.9H2O) (99%) and terephthalic acid (TPA,99%) were purchased from 
Daejung and Junsei Chemicals, repectively. Ethanolamine (ETA,98%) was obtained from Alfa Aesar.  Toluene 
(99.5%) was procured from Daejung Chemicals. N,N-Dimethylformamide (99%) and ethanol (99.5%) for the 
purification of the MOFs were obtained from Daejung Chemicals.  Methanol and acetone were obtained from 
Daejung Chemicals, and Oxybenzone was obtained from Alfa Aesar.  

MIL-101 was synthesized from Cr(NO3)3.9H2O, TPA, and deionized water similar to a previously described 
method [44-46]. Cr(NO3)3.9H2O (4.0 g) 10 mmol, terephthalic acid (TPA) (1.66 g) 10 mmol, and deionized water 
(40mL) were blended and briefly sonicated resulting in a dark blue-color suspension. The suspension was then 
placed in a Teflon-lined autoclave bomb and was kept in an oven at 220°C for 17 h without stirring. After the 
reaction, autoclave was cool to room temperature. After that the MOF solids with green-colored was separated 
from water using a centrifuge (3,134xg, 15min) and was washed with water, methanol and acetone. The suspension 
in acetone was centrifuged and separated, to remove the unreacted TPA, the solids was placed in N,N-
dimethylformamide (40 mL) and the suspension was sonicated for 10 min and then keep at 70 °C overnight. The 
resulting solids were separated by centrifugation, repeatedly washed with methanol and acetone, was dried at 
100°C overnight. 

The –OH functionalized MIL-101s name MIL-101-OH was synthesized via grafting utilizing reported 
procedures [43, 47]. Before functionalization, MIL-101 was dehydrated at 150 0C for 12 h in a vacuum oven to 
generate CUSs (coordinatively unsaturated sites ).The dehydrated MIL-101 (0.6 g) was suspended in anhydrous 
toluene (60 mL) in a round-bottom flask equippe with a reflux condenser and a magnetic stirrer, and each of 2 
mmol of ETA (Ethanolamine) was added to this suspension. The mixture continuously was stirred and refluxed for 
12 h. The obtaind solid was cool to room temperature, was separated and was washed with ethanol/de-ionized 
water, and was dried at room temperature and then the MOFs solid was kept in desiccators for further use. 
 

            2.2 Characterization 
X-ray powder diffraction patterns were obtained with a diffractometer (SWXD, CuKα radiation). FT–IR 

spectra were recorded on a Hyperion-2000 (ATR, maximum resolution). The nitrogen adsorptions of the 
adsorbents was obtain at -196 0C with a surface area and porosity analyzer (BRLSORP-max) after evacuation at 
150 0C for 12 h. The surface area of adsorbents was calculated using the BET equation.  
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           2.3 General Procedures for the Adsorption Experiments 
Oxybenzone solutions with the desired concentrations were prepared using deionized water. An oxybenzone 

calibration curve was prepared by determining the absorbance at 230 nm with a series of standard oxybenzone 
solutions (1–10 mg/L), and the initial or equilibrium concentrations of oxybenzone was calculated with the 
calibration curve. Formerly to adsorption, the sample was dried for 12 h at 100 0C under vacuum conditions. For 
each adsorption experiment, approximately 5 mg of the sample was added to the oxybenzone solution (50mL, fixed 
concentration) and was stirred for 10 min to 12 h at 25 0C. After stirring the solution, the adsorbents was filtered 
with a syringe filter (PTFE, 0.45 µm) and the oxybenzone concentration was determined from the absorbance of 
the UV spectrum. In the case of a high oxybenzone concentration, the UV analysis was conducted after consecutive 
dilutions of the oxybenzone solutions.                      
The following mass-balance relation (Eq.1) was used to determine the amount of adsorbed oxybenzone 

 

                                                              
 

 ⁄    - - - - - - - - - - - - - -   (1) 

 

where C0 (mg/L) was the initial concentration, Ct (mg/L) was the concentration at time t, V(L) was the volume of 

the oxybenzone solution and w(g) was the weight of the adsorbents.  

 

3.  Results and Discussion 
            3.1 Characterization of the Adsorbents 

The XRD patterns of the MIL-101s shown in Fig. 1a was accommodating with simulated one [43, 44] 
confirmed the MIL-101s were successfully prepared and that the crystal structure of pristine MIL-101 does not 
change with functionalization. However, the XRD intensities of the MIL-101s decreased slightly on modification, 
particularly those of MIL-101-(OH), probably because of some severe conditions which was required for these 
modifications. The nitrogen adsorption isotherms of the MIL-101s and the BET surface areas (Table 1) obtained 
from these isotherms show that the MIL-101s have considerable porosities, although functionalization (to 
introduce –OH group) reduced the porosities. This reduction could be due to the volumes of the functional groups 
and/or the decreased crystallinity with modifications (as shown by the XRD patterns). FTIR spectra of the 
modified MOFs shown in Fig. 2c confirmed the grafting was successful based on the presence of the band at 1216 

cm−1, which originate from the C-N stretching of the grafting agents [48]. 

 

 
                                                                                                         (b) (Blue color – MIL-101(Cr) & Red color- MIL-101-OH) 

                                           Figure-1. (a) XRD patterns, and (b) FTIR spectra of MIL-101s 
 

 

 

 
  

 
          Table-1.  BET surface areas and total pore volume of MIL-101s 

Adsorbent BET surface area  SABET(m2/g) Total pore volume [cm3 g-1] 

MIL-101(Cr) 2,534.4 1.847 

MIL-101-OH 1,951.5 0.9615 

           

3.2 Adsorption Isotherms and Kinetics Results 
      Isotherms for oxybenzone adsorption by MIL-101s were obtained at 20-25 °C after 12 h of adsorption, which is 
sufficient for equilibrium, and the results are shown in Fig. 3. The adsorbed amounts (based on weight of MIL-
101s) at equilibrium decreased in the order MIL-101–OH > MIL-101, which was the same order as observed for 
quantity adsorbed after various times with different concentration (Fig.2). The maximum adsorbed quantities (Q0) 
obtained from Langmuir plots are summarized in Table 2, and the results again show that MIL-101s functionalized 
with –OH groups were highly effective at adsorbing oxybenzone from water.  
 

                Table-2. Relative adsorbed amounts of PPCPs over the two MOFs (MIL-101, MIL-101-OH) after 12 h of Adsorption 

MOFs PPCPs Maximum adsorption (Q0 mg/g) r² 

MIL-101(Cr) Oxybenzone           73.50 0.9999 
 MIL-101-OH Oxybenzone              121 0.9998 

 

      Isotherms for ibuprofen adsorption by MIL-101s were obtained at 25 °C after 12 h of adsorption, which is 
sufficient for equilibrium, and the results are shown in Fig. 3. The adsorbed amounts (based on weight of MIL-
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101s) at equilibrium decreased in the order MIL-101–OH > MIL-101, which was the same order as observed for 
quantity adsorbed after various times (Fig.2). The maximum adsorbed quantities (Q0) obtained from Langmuir 
plots are summarized in Table 1, and the results again show that MIL-101s functionalized with –OH groups were 
highly effective at adsorbing ibuprofen from water. 
 

(a) MIL-101(Cr) 

                                
 
(b) MIL-101(Cr) 

                                
Figure-2. Effect of adsorption times on the adsorbed amounts of oxybenzone over (a) 
MIL-101(Cr) and (b) MIL-101-OH. 
Show the adsorbed amounts of oxybenzone based on the unit weight of adsorbents. 

                                       The initial concentration of oxybenzone was (10-50 ppm.) 
 

The kinetics of oxybenzone adsorption of different concentration over MIL-101(Cr) and MIL-101-OH had 
been calculated. Oxybenzone adsorption kinetics followed previously described method [49] the pseudo-second-
order equation can exactly illustrated.  The Equation (2) for pseudo-second-order model which can explain the 
kinetics has given below 

                                               
  
      

        
     - - - - - - - - - - - - - - - - - -- (2)       

 qt(mg/g) at time t, the amount of adsorbed, qe  (mg/g) at equilibrium stage the amount of adsorbed, t(hour)  time 
(adsorption time) and k2(g/mg, hour) pseudo-second-order rate constant. The kinetics results of oxybenzone adsorption 
over MIL-101s have been given in Table 3.  The kinetics of oxybenzon adsorption over MIL-101s showed that the 
qe value and k2 value of oxybenzone adsorption over MIL-101(Cr) and MIL-101-OH were decreased in the order of 
MIL-101-OH > MIL-101(Cr) respectively. The kinetics of oxybenzon adsorption over MIL-101s showed that the 
qe value and k2 value of oxybenzone adsorption over MIL-101(Cr) and MIL-101-OH were decreased in the order of 
MIL-101-OH > MIL-101(Cr) respectively.  
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Table-3. The kinetics of oxybenzone adsorption over MIL-101(Cr) and MIL-101-OH. [when the Concentrations of 
oxybenzone  solutions were  40 & 50ppm] 

MOF(adsorbent) Initial concentration qe (mg/g) k2(g/mg,hour) 

MIL-101(Cr) 

10ppm 47.26 0.0291 
20ppm 63.59 0.0305 

30ppm 67.90 0.0312 
40ppm 69.92 0.0372 

50ppm 70.94 0.0475 

MIL-101-OH 

10ppm 60.25 0.0385 
20ppm 81.05 0.0403 

30ppm 92.34 0.0422 
40ppm 102.12 0.0528 

50ppm 104.16 0.0561 

                        

  
Figure-3. Adsorption isotherms of oxybenzone over (a) MIL-101 and (b) MIL-101-OH (at 20- 25 °C) 

 

3.3 Discussion 
From the above tables (Table 2 and Table 3), Q0 means the highest oxybenzone adsorption capacity of MOFs 

and qe means the adsorbed amount during equilibrium. So in this research the highest oxybenzone adsorption 
capacity of MIL-101(Cr) was 73.50 mg/g (based on unit weight of MIL-101) and highest oxybenzone adsorption 
capacity of MIL-101-OH was 120 mg/g (based on unit weight of MIL-101-OH) and the kinetics of oxybenzon 
adsorption over MIL-101s showed that the qe value and k2 value of oxybenzone adsorption over MIL-101(Cr) and 
MIL-101-OH were decreased in the order of MIL-101-OH > MIL-101(Cr)respectively. So on the basis of 
comparison the adsorption capacity of MIL-101-OH was higher than the adsorption capacity of MIL-101(Cr), and 
oxybenzone’s adsorption capacity of both MOFs were decreased on the order MIL-101-OH > MIL-101(Cr) (based 
on unit weight). The reason for which, MIL-101-OH oxybenzone’s adsorption capacity was higher compared to 
MIL-101(Cr) because it contain H-bonding and that H-bonding was maybe responsible for making MIL-101-OH 
more capable for oxybenzone’s higher adsorption. Again from the kinetics the qe value and k2 value of oxybenzone 
adsorption over MIL-101(Cr) and MIL-101-OH at different initial concentrations were gradually decrease on the 
discipline of MIL-101-OH > MIL-101(Cr) (based on unit weight).  

 
4. Conclusion 

In conclusion, a typical MOF with high porosity (MIL-101) was modified to introduce functional group such as 
–OH in order to use it for the adsorptive removal of PPCPs such as oxybenzone from an aqueous solution. Even 
though the surface area of the virgin MOF decreased noticeably, the modified MIL-101 was very effective at the 
PPCPs adsorption. MIL-101-OH showed the highest PPCPs uptakes based on weight and surface area, 
respectively. Finally, MIL-101-OH is suggested to be a potential adsorbent for PPCPs removal based on 
competitive adsorption when compared with carbonaceous materials, mesoporous materials [50, 51] and pristine 
MIL-101. 
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