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In this paper, we elaborate a nonlinear theory of plants suggested to both fifth nonlinearities and non-

sinusoidal wind effects modeled by the sinus cardinal function known as a good model used to 

approximate the Dirac function (behavior). By using the plan beam theory and the multiple time scales 

method, we find that the interactions between plants and wind are governed by the coupled differential 

system of equations. Through analytical and numerical techniques, we observe in the non-resonance 

state, that the effects of wind on the plant are worthless while its harmonic oscillations with their 

corresponding stability boundaries are tackled in the resonance case. Owing to the rang of the control 

parameters, we also examine periodic, quasi-periodic and chaotic behavior of the system. Our 

investigations show that judicious choice of some system’s parameters can avoid the plant rupture 

during violent storms. For applications, numerical simulations carry out with the physical parameters of 

Pinus Pinaster Ait., corn plant and those of Raphia Vinifera lead to very interesting results showing the 

wideness applicability of the results established within this paper.  

 
Keywords: Plants, Nonlinear dynamics, Resonance, Stability, Chaotic behavior, Non-sinusoidal wind load, Hysteresis, 

Applications. 
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1. Introduction 
Several studies have been reported in the investigation of the wind-plant interactions [1-4] since wind damage is 

a global phenomenon that affects plantations and forests such as Storm Vivian in Northern Europe [5]. Such storms 

severely affect forest management in many countries of the world [6]. Wind loads are understood as a largest 

dynamic load on plants [7-9]. Loads caused by wind are periodic and create a sway motion in trees which can be 

simplified using a conceptual model of a tree stem without branches and being considered as an upside-down 

pendulum or a beam [10, 11]. In this context various studies regard the wind-plant interaction as linear [12] by 

considering the plant’s stem as an elastic rod excited by wind. Wherein, Tchassi has found that the plant amplitude of 

oscillations increases not only with the density of field but also with the average speed of the wind showing that this 

speed varies rapidly with time. On the other hand, those studies consider the wind profile as sinusoidal [12, 13]. In 

particular, this last research work has the feature of introducing the nonlinear behavior of the wind-plant interaction 

but takes a sinusoidal wind profile. This sinusoidal form is known to be a school case which is very difficult to 

realize since a signal produced by the real physical system cannot exist at infinite. Likewise a pure sinusoidal 

physical phenomenon does not exist since any physical phenomenon has a finite duration.  

In this paper, we proposed to improve this last work by considering nonlinear wind-plant interactions suggested 

to sinus cardinal wind profile since it is known that external excitation possesses a sinus cardinal profile is currently 

used in mathematical/numerical analysis, wave physics and numerical digital signal [14-17]. This paper is organized 

as follows. Section 2 presents the model description as well as the nonlinear damped coupled equations of motion. 

Section 3 investigates the analytical and numerical solutions of the concerned system. Section 4 deals with the study 

of the chaotic behavior of our system while discussion and concluding remarks are given in section 5. 

 

2. Model Description and Equations of Motion 
During the plant existence, its dynamical characteristics are decisive elements for his interaction with the 

environment (wind for example). The movement of air in the absence of obstacles is described by the general fluid 

equation [18]. In our study of the interactions between air and plants, we assume that the velocity field is 

homogeneous with uniform motion in the x-direction and the force per volume unit is neglected. Therefore, the 

equation of the air motion is reduced to the following differential equation that links the wind acceleration to the 

pressure gradient :  

1dv dp

dt dx
 

          

 (1) 

where p  is the pressure,   the density and t  the time of air flow.  

To study the dynamics of the plant in the air, we exploit the classical dynamics theory of beams [5] and obtain 

the following system of coupled nonlinear differential and damped dimensionless equations that governs the plant’s 

motion in the air :  
2

2 3 5

1 0 12

d x dx dx dx
x x x v v

d d dt dt
    

 

 
       

                   

(2a) 

 1

dv dx dx
v v K

dt dt dt
 
 

    
           

 (2b) 

wherein x  is the amplitude of the plant displacement, v  is the fluctuated values of the wind speed, 1  and 1  

are constants coefficients, 0  is the natural frequency of the plant,   and   are respectively the cubic and fifth 

order nonlinear coefficients, and 1  is a damping coefficient. In Eqs.(2),  K  stands for the wind action on the plant 

and its explicit form will influence the motion adopted by the plant. Hence,  K   could have a sinusoidal form, a 

sinus cardinal behavior or a stochastic form. However, the sinusoidal signal [13] is a school case which is very 

difficult to realize since the signal produced by the real physical system cannot exist at infinite. Likewise a pure 

sinusoidal physical phenomenon does not exist since any physical phenomenon has a finite duration. In the present 

investigations, we consider that the external excitation possesses a sinus cardinal profile (    1 sinK K c  ) 

which is currently used in numerical digital signal [14], wave physics [15] and mathematical/numerical analyses[16, 

17]. This sinus cardinal profile is also very useful because it is possible to exploit the Dirac function to represent its 

impulsion for small time [19, 20]. This form of the external excitation is requested when the amplitude of the wind is 

concentrated on the specific part of the plant. Here, 1K  is the amplitude of the external excitation strength. 

Consequently,  Eqs. (2) are rewritten as : 
2

2 3 5

1 0 12

d x dx dx dx
x x x v v

d d dt dt
    

 

 
       

       

(3a) 

 1 1 sin
dv dx dx

v v K c
dt dt dt

 
 

    
        

(3b) 

The first equation of (3) describes the plant oscillations under the wind effects and its right hand side defines the 

drag term while the second equation of the system governs the movement of the wind in the presence of the plant 

associated with the drag per unit mass. Let us remind that the sources of friction of a vibrating plant in the air possess 

three main origins: the interactions between the given plant and the neighboring plants, changes in aerodynamic 

movement of foliage, the natural viscosity of the plant under consideration. Since we consider the drag term, which 

is in general the trajectory described in the air or on the surface by the body in motion, we will study the changes in 

the aerodynamic movement of foliage. In relations (3),  1 02pC s S   and 1 2aC A   are constant coefficients 
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in which aC  is a positive constant that characterizes the trajectory of the plant during its motion in the air (drag), 

A S   designates a spatial area per unit volume projected normally to the wind direction,   stands for the volume 

of air, s  is the cross section of the plant, S  represents the projected area on the perpendicular plane of air flow of the 

deformed stalk that could depend on the plant’s height or its length, 
pC  is the drag coefficient of the deformed plant 

linked to its geometry. Therefore, we may expand the nonlinear product within (3) to the third order as follows  
3

1 2

dx dx dx dx
v v c v c v

dt dt dt dt

     
          

     
 

in which 1c  and 2c  are real constants and 
dx

v
dt

  is the relative speed of air in relation to plant. Consequently, 

expressions (3) take the form: 

 
32

2 3 5 2

1 1 1 0 1 1 1 22
0

d x dx dx
c x x x c v c v

d d dt
       

 

 
         

    

(4a) 

 
3

2

1 1 1 1 1 2 1 sin
dv dx dx

c v c c v K c
dt dt dt

    
 

     
      

(4b) 

These relations represent the coupled system of nonlinear differential damped equations that governs the plant-

wind interactions.  

 

3. Analysis of the Equations of Motion  
The aim of this section is to investigate the analytical and numerical solutions of the equations of motion (4). 

Thus, there exist several methods to solve analytically these equations. Since we are interested by weak 

displacements of the plant, we choose the multiple time scales (MTS) method [18] for this analysis. For this purpose, 

we multiply the amplitude of the external force by   and the damping coefficients by 
2  in order to ensure the 

nonlinear factor to appear simultaneously with friction and the external excitation. This last assumption also allows 

the determination of certain greatness characteristics of the system plant-wind. Hence, we put 
2

1   , 
2

1   , 

2
1     and 1 0K K . Under all these considerations, the equations describing the motion of the system take the 

form: 

 
32

2 2 3 5 2 2

1 0 1 22
0

d x dx dx
c x x x c v c v

d d d
         

  

 
         

   

   (5a) 

 
3

2 2

1 1 2 0 sin
dv dx dx

c v c c v K c
d d d

      
  

 
     

         

(5b) 

Following the MTS method, the general solution of Eqs. (5) is expanded as: 

       2

0 0 1 1 0 1 2 0 1, , , , ...x t x T T x T T x T T     
 

(6a) 

       2

0 0 1 1 0 1 2 0 1, , , , ...v t v T T v T T v T T          (6b) 

in which   is a small dimensionless perturbative parameter that helps to control the order of the amplitude of 

oscillations. The fast time scale 0T  and the slow time scale 1T  characterize the modulations in the amplitude and 

phase of the solutions  ,x v  induced by nonlinearities, damping and coupling of the considering system. 

Substituting the expressions (6) into Eqs.(5) and equating the coefficients of 
0  and 

1  to zero, lead to the following 

systems of equations for jx  and jv ( 0,1)j  : 

Order 
0  :   

2 2

0 1 0 1 0D x x 
         

(7a) 

0 1 1 1 0 0sin ( )D v c v K c T  
        

(7b) 

Order 
1  :  

2 2 3

0 3 0 3 0 2 1 2 0 1 1 1 1 2 1

2 2 3

2 1 0 1 2 1 0 1 2 0 1

2 2

3 ( ) 3 ( ) ( )

D x x D D x D x x c v c v

c v D x c v D x c D x

    

  

      

  
   (8a) 

 
3

0 3 1 3 2 1 1 0 1 2 1 2 1 0 1

2 3

2 1 0 1 2 0 1

3

3 ( ) ( )

D v c v D v c D x c v c v D x

c v D x c D x

   

 

     

 
    

(8b) 

with  2 1 2c      ;    D 00    and   D 11  .  

The resolution of Eqs. (7) leads to the following general solution 

 1 1 1 0 0x A (T )exp i T   c.c   

     1 0 0 0 0 0v T sin T cos T      
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in which c.c  stands for the complex conjugate of the preceding terms and diverse constants are given by     

 0 A B T    and       0 0 1D E T c     

with 

1 0

1 1
A

c T




 
  

 

  ;    
2

1 1 0

1 1 1
B

c c T

 
  

 

  ;    
2

1

1
D

c



 

 
  
 

 ;    
2

1 0 1 0

2 1
E

c T c T



 

  
 

. 

Within the solution of Eq. (7a),  1 1A   represents an arbitrary complex function which is determined from Eq. (7b) 

by imposing the solvability or secular conditions. Thus, the report of the general solutions 1x  and 1v  into Eq. (8a) 

yields  
0 0 0 0

0 0 0 0 0 0

0 0 0 0

32 2

0 3 0 3 1 2 3 4 5

3 (2 ) ( 2 )

6 7 8

( 2 ) (2 )

9 10

( ) ( )

. .

i T i T i T

i T i T i T

i T i T

D x x M e M M e M M e

M e M e M e

M e M e C C
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    

   



 

 

     

  

     

(9) 

in which the different coefficients jM  1,...,10j  are given in Appendix A. It appears that the right side of Eq. 

(9) includes both the natural frequency of the plant 0  and the frequency of the external excitation ( ). Therefore, it 

could arise during the plant-wind interactions that these two frequencies are closed (resonance case) or not (non 

resonance case). These two possibilities will be examined separately in the upcoming subsections. 

 

3.1. Investigation of the Non-Resonant Case 
This case appears when the frequency of the external force (wind) is different from the natural frequency of the 

plant i.e., 0  . Hence, the solvability conditions applied to Eq. (9) yields  

  2 2

0 1 1 1 1 1 1 2 0 1 2 0 1 1

1
2 3 3 0

2
i dA dT A A A c A i A A      

 
      

    

(10) 

in which 1A  is the complex conjugate of 1A . Assuming weak nonlinearity and using the first order perturbation 

theory in polar coordinates [21, 22], the solution of Eq. (10) could be taken in the form : 

 

     1 1 1 1

1
A T a T  exp i T

2
   

       
(11) 

where a  and   are real quantities that represent respectively the amplitude and the phase of the oscillations. 

Substitution of expression (11) into Eq. (10) leads to an equation whose separation in real and imaginary parts in 

stationary state yields a coupled flow for the amplitude and phase. Resolution of the obtained equations provides the 

following expressions for  a  and   respectively : 

 

 
 

 
1

1

exp 2

1 exp 2

NT
a

NT





 

 
 and  1 4

0

3
ln 1 exp 2

16
NT C

N


 

 
         (12) 

with 3
1 2 24

N c    ;  
33

1 0 28
N c and 1N N  . The quantities   and 4C  stand for integration constants. 

Therefore, it becomes possible to write the explicit form of the solution of Eqs. (7) and to check numerically its 

behavior as exhibited on Fig. 1a. This graph shows that when the time increases, oscillations of the plant stabilize at 

zero. This result is of weak interest because it describes the state of plant oscillations that disappears with time 

showing that the wind has no effect on the movement of the plant. To compare this result to that established for the 

sinusoidal wind profile [12, 13], we plot the corresponding displacement of the plant as function of time (Fig.1b). We 

note from these curves that the plant oscillation amplitude is lower and vanished quickly in the non-sinusoidal case 

that in the sinusoidal wind load profile. Let us examine how does the system behaves in the resonant case. 

 

 

Figures-1. Plant displacements load for the parameters 0.5  , 1.1  , 17.3  , 15  , 
0 5.6  , 0.1c  , 0.5   with 

1 0T T . (a): Case of the non-sinusoidal wind load (    1 0 1K T k sinc T ) using the parameters 
1 0.7c  , 

2 1.5c  ,  0 6.3K  , 

35.6  , 0.65   (b):  Case of the sinusoidal wind load (    1 0 1K T k sin T ) with the parameters 1 0.01c  , 2 0.05c  , 0 2k  , 

0.5   and 0.55  . 
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3.2. The Resonant Case  
Generally the resonance phenomenon occurs when the external frequency is too closed to the internal frequency. 

Therefore the system receives energy and oscillates with big amplitude. The plant experiences this resonance 

phenomenon owing to the energy it receives from the wind during the plant-wind interactions. In mechanics, this 

phenomenon is hurtful since it is responsible of the system’s destruction. For example, it is the case of the branch 

break or the uprooting of the plant if its proper frequency is closed to that of the wind which provokes the plant 

oscillation. Hereafter we will investigate respectively the primary resonance (harmonic oscillation : 0  ) and the 

different cases of the secondary oscillations (super-harmonic and sub-harmonic oscillations). 

 

3.2.1. Harmonic oscillations 

 In this case, the closeness between the wind frequency   and the plant oscillation frequency 0  is given by the 

relation 2

0      in which   is the resonance frequency parameter (detuning parameter). Secular conditions 

imposed to the right hand side of the Eq. (9) lead to : 

  1

2
21 2

0 1 1 1 1 0 1 2 0 1 1 1 2 4 32

1

2 3 3 0
2

i Td A
i A A A i A c A A P P P P e

dT


     

   
            

  
      (13) 

with  1 2 2 0 0

1

8
P c i     ;     2 2 2 0 2 0 2 0

1

8
P c i            ; 

  2

3 2 2 0 0 1 1 0 0

3
3

8
P c A A i     

 
   

     

and   4 2 0 2 2 2 1

3

4
P i c A       .  

Considering the steady-state conditions 1 0da dT   , 1 0d dT   (which corresponds to the singular point of Eq. 

(13)) and assuming that amplitude and phase vary slowly, one obtains the following coupled relations : 

         2 2

9 1 1 8 2 7cos 2 cos sind a g d a g d a       
                               

 (14a) 

         2 2

9 2 1 8 2 7

1
sin 2 sin cosd a g d a g d a

a
                        (14b) 

in which the diverse coefficients jd
 
are given in Appendix B. 

 

 

Figure-2. Resonance of the primary state for the parameters 1 0.6c  ; 

2 0.02c  ; 0.05  ; 4.5  ; 0.1  ; 0 2  ; 0 1.5K  and 

25 
 

 

The computation of (14) leads to the upcoming algebraic nonlinear equation for the amplitude : 
6 5 4 3 2

0 11 2 3 4 5 6 0A a A a A a A a A a A a A      
                                    

(15) 

where the different coefficients ijA  are given in Appendix C. This expression (called the frequency-response 

equation) is an implicit function of the detuning parameter   and the amplitude of the wind load 0K . It cannot be 

solved analytically. Numerical solution of Eq. (15) presented on Fig.2 gives the behavior of the amplitude at the 

steady-state. It shows that this amplitude reaches its maximum value when the detuning parameter becomes null. 

Around this particular value could be observed the destruction of the plant (branch breaking, uprooting, etc.).  

To reduce the phenomenon described above, we investigate the impact of the nonlinear terms on the behavior of the 

block. Owing on the fact that nonlinearity induces generation of harmonics in the system, we wish that, in the 

presence of higher nonlinearities, the plant could be able to adjust its orientation according to the wind direction. 

Figs. 3 exhibit the evolution of the amplitude of the plant as function of the detuning parameter   for various values 

of the highest nonlinear coefficient  . We observe hysteresis phenomenon which traduces the capacity of the plant 

to come back toward the wind profile in a given region and adjust itself to resist the wind attacks. This hysteresis 

phenomenon clearly comes out for higher nonlinearities. 
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Figure-3. Hysteresis curves obtained at the resonance for the parameters of Fig. 2 with 1 0.6c  , 2 0.02c  , 0.18  , 
0 2.0032 

, 4.5  , 0 1.902K   , 0.05   and several values of  . The hysteresis phenomenon becomes more visible with the growth of   

values. 

 

Hereafter, we investigate the influence of the other parameters of the system on the amplitude of plant’s 

displacement. Graphs of Figs. 4 give the amplitude-response curves of the harmonic resonance as function of those 

parameters. 

In Fig. 4(a), the effects of the wind amplitude 0K  on the dynamics of the plant are checked. It appears that the 

acuteness of the resonance increases with the growth of the wind load. Meanwhile, the growth of 0K  is bad for the 

plant survival. Fig. 4(b) shows that the amplitude of the plant displacement decreases strongly with the increment of 

the natural frequency of the plant. Since this parameter deals with the mechanical properties of the plants, this result 

confirms the fact that flexible plants resist well to the wind attacks. On Fig. 4(c), the influence of the parameter   

which gives the plant its natural ability to absorb the wind energy is examined. From the obtained plots, we remark 

that when   grows, the system bandwidth increases but the maximal amplitude at the resonance is unchanged. This 

result confirms what it is usually seen on the field where plants with large shape absorb easily the wind energy than 

those of small shape. Meanwhile the growth of the energy absorption parameter   increases the ability of the plant 

to enter the resonance state. 

 

 

 
Figure 4. Effects of (a) the wind’s load amplitude 0K , (b) the natural frequency of the plant 0  , (c) the energy absorption parameter 

 , and (d) the plant density parameter   on the resonance curve for the parameters of Fig.2. 

 

As Fig. 4(d) is concerned, we observe the effects of the parameter   (which links with the plant’s density in the 

field) on the resonance behavior. It appears from the obtained curves that the resonance phenomenon is reducing as 

the values of   increase. 

 

3.2.2. Stability State of the Primary Oscillations 
In this subsection, we examine the stability of the nonlinear displacement of the plant suggested to the specific 
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wind loads. To build the stability criterion of the process, we assume that the stationary state suffers a small 

perturbation which manifests itself by slight variations of a  and    as follows : 0 1a a a   and 0 1   
 

wherein 
0a  

 and  
0  define the steady-state amplitude and phase while 1a  and 1  are respectively their 

perturbations (with 01 aa 
 
and  1 0  ).  Inserting  a  and   into the system (14) yields two differential 

equations that govern the evolution of the perturbation from which we derive the following eigen values equation :  

 2

11 22 11 22 21 12 0b b b b b b            (16) 

where   designates an eigen value and the coefficients bij  ( , 1,2i j  ) are given in Appendix D. Application of 

the Routh-Hurwitz stability criterion yields the conditions for the stability of plant under the non-sinusoidal wind 

load :  

 11 22 0b b    and 11 22 21 12 0b b b b 
                               

(17) 

The numerical resolution of Eq. (16) by verifying the simultaneous analytical condition (17) gives solution 

plotted on Figs. 5. These figures show that, for some values of the detuning parameter, the instability and the stability 

solutions are separated in certain area. Here, the system (plant-wind) exhibits a regular movement and the behavior 

of the plant can be easily controlled while this operation seems to be difficult in the regions were the instability and 

stability responses of the system are confused. Here, we are mostly concerned by mechanical stability because only 

stable solutions of dynamical systems are of interest since they correspond to the real position occupied by the 

system. 

Figure-5. Stability curves of the harmonic oscillations of the system for the parameters of Fig. 2 with (a): 39   and (b): 39   . The 

blue curve stands for the unstable solution and the red curves represent the stable solution. 
 

3.2.3. Super-Harmonic Oscillations 

When the wind amplitude 0K  is large, other types of behaviors could appear in the system known as sub-

harmonics and super-harmonics resonant states. We will start our founding by the latter case. In order to express the 

closeness of   to the internal frequency, we introduce the detuning parameter   according to   2

0 3     . 

Thus, additionally to the terms proportional to (  0 0exp i T ), the one proportional to (   2

0 0exp 3i T   ) also 

contribute. Therefore, the solvability condition is defined as: 

      

      

1

22
0 1 1 1 1 1 0 2 0 2 0 0

21
2 0 2 0 2 2 0 0 2 2 0 2 0 0 08

2 3 3 2 exp

3 exp 3 0

A
i dA dT A A i c i T

c i i i i T

       

               

     
 

           

(18) 

After substituting the expression of  1 1A T  taken in polar coordinates [21, 22] into Eq.(18), computations lead to 

the nonlinear equation below : 
6 4 2

0 1 2 3 0H a H a H a H   
       

(19) 

with 
2 29

0 1 64
H b     ;    9

1 1 1 0 2 08
2H b b        ; 

  
2 2 2

2 1 0 2 09H b     
 

 and   2 2

3 3 4H b b    

in which  1 2 03 4b   ;   
3

2 2 03 8b c  ;    1
3 2 2 0 2 2 08

b c             and 

  1
4 2 2 0 2 2 08

3b c            



Asian Engineering Review, 2015, 2(1):1-14 

 

 

 

 

8 

 

 
Figure-6. Resonance-curve and hysteresis of the super-harmonic behavior of the plant for the parameters 1 0.9c  , 2 0.02c  , 8  , 

3.6  , 0 6.37k  , 0 0.5  , 0.1  with 5  for resonance and 35  for hysteresis. 

 

The numerical solution of Eq. (19) gives the resonance curve plotted on Fig. 6a that shows the behavior of the 

plant under wind load. The corresponding hysteresis is given by Fig. 6b. Indeed, the plants can be considered as a 

plastic or stable mechanical structure growing in variable media [8, 23]. Moreover, plants should give proof of 

plasticity to face the adversity of environment and adjust their growth properties during their existence. This specific 

character is contrary to another living species particularly the animals which can run away while their environment 

becomes hostile. 

 
Figure-7. Stability curve for superharmonic oscillation obtain with the parameter of 

Fig. 6 with 55  . Stable solutions are in red color and unstable solutions in black 

color. 

 

Following an analog method developed for the stability of primary oscillations, we show that the stability 

condition of super-harmonic oscillations deals with the sign of the eigen values of the equation : 

 2

11 22 11 22 21 12 0e e e e e e             (20) 

with the condition  11 22 0e e    and  11 22 21 12 0e e e e           (21) 

In Eq. (20),  designates an eigen value and the coefficients ije  ( , 1,2i j  ) are given in Appendix E. The 

numerical solution of Eq. (20) is given on Fig. 7. 

 

3.2.4. Sub-Harmonic Oscillation 
To analyze the sub-harmonic resonance, we consider that the two frequencies are now linked by the relation 

2

03     . Therefore the condition under which the secular terms are now cancelled is given by the relation : 

      

      

2 2

0 1 1 1 1 1 2 2 0 1 1 1 1 0 0

2
2

2 0 1 0 0 0 0

2 3 2 3 exp

3 2 exp 2 0

i dA dT A A c A A A A i T

c A i i T

      

     

     
 

    
  

           

(22) 

After substitution of the expression of  1 1A T  defined by relation (11) into Eq.(22), we obtain the following 

system of equations  

 2 2 3

2 3 1 0 1

2 2 3

3 2

cos sin

cos sin 3 8

h a h a h a ha

h a h a a

  

  

     

  

             (23) 
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Figure-8. Frequency response curves and hysteresis of the sub-harmonic oscillations of the plant for the parameters :

1 0.6c  , 
2 0.1c  , 

0 0.18  , 
0 2.78K  , 5.02  , 1.4  , 0.4  with 2.5  for resonance (a) and 15   for hysteresis (b). 

 

that leads to the upcoming equation via some algebraic treatments : 
4 2

0 2 3 0A a A a A  
     

      (24) 

with  
2 2

0 9 64A h    ,     2 2

2 1 0 1 2 32A h h h h      and   
2

3 1 0 1A h  where  3

2 03 8h c  ;  

1 2 03 4h   ; 2

2 2 0 03 8h c   ;  
2

3 2 0 03 8h c     and  
2 3T     

Numerical resolution of Eq. (24) yields solution that is plotted on Fig.8a with the corresponding hysteresis in 

Fig.8b. This numerical solution shows us the behavior of the amplitude ‘’a’’ when the detuning parameter   varies 

for some fixed values of the parameters 0K
 
and  . 

From this figure, we can say that the resonance phenomenon occurs for the smallest values of some parameters 

than the super-harmonic oscillation. If we increase those parameters the plant can be destroyed. 

According to the stability condition of sub-harmonic oscillation we have the following equation : 

 2

11 22 11 22 21 12 0q q q q q q            (25) 

with the condition  11 22 0q q    and   11 22 21 12 0q q q q 
              

(26)  

In this case,  designates an eigen value and the coefficients ijq  ( , 1,2i j  ) are given in Appendix F. The 

solution of Eq. (25) is given on Fig.9 which shows that stable and unstable solutions are very confused as the 

detuning parameter   exceeds a critical value. Thus, the plant motion cannot be controlled. 

 

 
Figure-9. Stability curve for sub-harmonic oscillation obtain with the 

parameter of Fig. 8 with 25  . Stable solutions are in red color and 

unstable solutions in black color ; 

 

According to what appear in this part of our work and thanks to the fact that the variations of some parameters 

have a notorious effect on the system’s dynamics, it becomes very interesting to see if the plant can be a seat of 

chaotic phenomenon. 

 

4. Chaotic Behavior of the System  
As nonlinear systems, trees under wind effects can exhibit chaotic motion depending on the perturbation of their 

initial state. Thus investigate how chaotic behavior arises in nonlinear systems is useful to complete the 

understanding of their behavior. Indeed, chaotic motions are of interest in executing activity adaptation [24] and state 

transitions in response to environmental changes [25] and, consequently create a rich repertory of responses [26]. 

The quenching of chaos in dynamical systems is also important in physical science because chaos control techniques 

are expected to bring out new phenomena in various scientific domains [27]. On the other hand, the existence of 

chaos is sometime needed because some chaotic dynamical systems have the advantage of providing qualitatively 

simple mechanism to generate deterministic pseudo randomness [28]. In applications, chaotic systems are used to 

produce, simulate and control different processes improving their performance or providing more suitable outputs 

[29]. Therefore the use of chaos in mechanical vibrating structures such as plants seems quite natural and assists to 

the introduction of constraints which aimed to elucidate the internal properties inherent to the system itself. In this 

section, we analyze the way chaos arises in the model described by Eqs.(2) since it is of interest in plant’s 

oscillations. 
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Figures-10. Lyapunov exponent (a) and bifurcation diagram (b) with the coefficients 0.2  , 1 0.9c  , 0.01  , 5.0  , 0.1  , 

0.2   and 0 2.4  . 

 

In the view of deriving the condition for the appearance of chaos in our model as the parameters of the system 

evolve, we start with the bifurcation analysis by rewriting (5) as combination of first order differential equations as 

follows: 

       

       

2 3 5 3 3 2 2

1 0 2 2

3 3 2 2

1 2 2 0

3

3 sin

dx
y

d

dy
y c y z x x x c y z c y z z y

d

dz
c y z c z y c z y y z k c t

d



      


   








          



       
     (27) 

wherein x  designates the amplitude of the plant motion, y  stands for its speed and z  represents the wind 

velocity.  

Numerical resolution of Eq. (27) is made via the fourth-order Runge-Kutta algorithm using the wind amplitude 

0K  as control parameter. Then the resulting bifurcation diagram and the variation of the corresponding Lyapunov 

exponent are given as 0K  varies (Figs. 10). Our investigation shows that the system exhibits chaotic behaviors only 

for large values of 0K . The phase portraits are depicted on Figs.11 showing both regular and chaotic motions for 

different values of 0K . We also observe form those graphs that the plant motion under non-sinusoidal wind effects 

present intermittence behavior. 

 

 

 

 
Figures 11. Phase portrait curves versus control parameters for (a) 0 0.282K  ; (b) 0 1.250K  ; (c) 0 1.310K  ; (d) 0 1.450K  ; (e) 

0 1.799K 
 
and (f) 0 1.990K  . 

 

Hereafter, we choose some specific plants or trees for possible applications of the results previously established. 

For those species, we examine the amplitude response, the corresponding hysteresis and the stability curves for the 

harmonic motion. The curves are obtained using the physical characteristics [4, 30, 31] of the maritime pine tree 
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(Figs.12), the corn plant (Figs.13) and the bamboo of raphia vinifera (Figs.14). All those plots show the behavior of 

those plants under wind loads. The chaotic behaviors of those species are not found. 

 

 
Figures 12. Resonance-curve (a), hysteresis (b) and stability (c) of the pine for the parameters 1 0.9c  ; 2 0.1c  ; 

0.05  ; 0.1  ; 3.1  ; 0 1.7K  ; 0 10.98  with 120   for resonance and 0.009  ; 0.02  ; 

200   for hysteresis and stability (stable solution in black color and unstable solution in red color in Fig. 12c). 

 

 
Figures-13. Resonance-curve (a), hysteresis (b) and stability (c) of corn for the parameters 1 0.9c  ; 2 0.1c  ;  0.05  ; 

0.005  ; 0.5  ; 0 1.7K  ;  0 10.98 
  

with 20   for resonance and 0.002  ; 0.02  ; 50   for hysteresis 

and stability (stable solution in black color and unstable solution in red color in Fig. 13c). 
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Figures 14. Resonance-curve (a), hysteresis (b) and stability (c) of bamboo with parameters 1 0.9c  ; 2 0.1c  ; 

0.02  ; 0.1  ; 0.5  ; 0 0.5K  ; 0 10.98 
 
with 2   for resonance and 0.002   ; 0 1.7K  ; 

0 0.9  ; 17   for hysteresis and stability (stable solutions are in black color and unstable solutions in red color 

on Fig. 14c). 

 

5. Conclusion  
 In this paper, we have studied the dynamics of plant suggested to non-sinusoidal wind loads. We have presented 

the features of considering a non-sinusoidal wind load instead of a sinusoidal wind profile. Different interesting 

nonlinear dynamics of the system (plant-wind) have been discussed analytically and numerically.  For the resonant 

stationary state, we have observed several behaviors such as perfect resonant, hysteresis and quenching phenomenon 

of the plants motion under forced oscillations. The stability of harmonic, superharmonic and subharmonic 

oscillations has been analyzed and the obtained curves have exhibited the regions of stable and unstable behaviors. 

Within these results, we have noted the crucial role played by the cubic nonlinear coefficient on the system’s 

dynamics has been perceived. We have also investigated the chaotic behavior of the plant subjected to a non-

sinusoidal wind effects. Furthermore, we have shown the existence of regular and chaotic states that appear in 

discontinuous intervals leading to the intermittence phenomenon. For practical purposes, we have extended this study 

to various plant species such as maritime pine tree, corn plant and bamboo of raphia vinifera and, obtained goods 

results. Owing to the knowledge of the different structures and to the cropping method developed, all these results 

could be exploited in agriculture for the harmonious development of plants in the field (or trees in the forest).  

 

Appendix-A.  Coefficients of equation (9) 

 

 2 31
1 0 1 1 2 1 1 1 2 0

1

3
2 3

4

dA
M i A A A A c

dT
     

 
      

 
 

 20 2
2 2 2 2 0 1 124

8

c
M i i i A A

 
        ;    20 2

3 2 2 2 0 1 13 24
8

c
M i A A

 
         

 2 0
4 2 2 23

8

c
M i i


      ;     2 0

5 2 2 2
8

c
M i


      

3 3

6 1 2 0( )M A ic    ;    7 2 0 1 2 2 2

3

4
M c A i i       ;   2

8 2 0 1 1 0 0

3

2
M c A iA      

2
2

9 2 0 1 0 0

1
3

2
M c A   

 
  

 
;     10 2 0 1 2 2 2

3

4
M c Ai       . 

with 

1312
2 112 2

1 
 

  

 
   

 
;  1311 12 14

2 4 3 2

  


   
   

  
and   

11 12

2 134 2

 
 

 
    

in which 
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2

0
11 2 4 2 2 2

0 1 0 1 0 1

1 2 1K

T c T c T c


 

 
   

 

; 
2 2

0
12 2 2 2 2

1 0 0 1 0 1

2 ( 1) 1
1

K

c T T c T c






 
   

 

;
2

20
13 2 3 2

0 0 1 0 1

2 1K

T T c T c


 

 
   

 

;  

2

0
11 2

0 1 0 1

2 1K

T c T c
 

 
   

 

;     
2

0
13 2 2 2 2 2 2 2 3

0 1 0 1 0 1 0 1 0 1 0 1

2 2 2 1 2 2
1

K

T c T c T c T c T c T c

  




 
       

 

;  

2

0
12 2

0 1 1 0

2 1 1K

T c c T




 
   

 

;    
2

0
14 2 4 2 2 2 2 3

0 1 0 1 0 1 0 1 0 1 0 1

2 1 2 2 1 2 2K

T c T c T c T c T c T c




  

 
       

 

 

2

0
11 2 2

0 1

K

T c
  ;   

2

0
12 2 3 2 2

0 1 0 1 1

2 1 2 2K

T c T c c






 
   

 

;
2 22

0 0
13 2 4 4 2 2 2 2 2 3 4

0 1 0 1 0 1 0 1 0 1 1

4 4 1 1 2K T

T c T c T c T c T c c

 


  

 
      

 

;  
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0 2

3

4
d  ; 

1 2 2 0

0

1

8
d c 


 ; 

2 2 2 0

0

1

8
d c 


 ; 

3 2 2 0

0

1

8
d c 


 ; 

4 2 2 0

0

1

8
d c 


 ; 

5 2 2 0

0

1

8
d c 


 ; 

6 2 2 0

0

3

8
d c 


 ; 7 2 0 0

3

4
d c   ; 8 2 0 0

3

4
d c   ;  9 2 2 2 2

3

8
d c      ;   With 1 4 5f d d  ;     

2 2 6f d d  ;     1 1 1g f d  ;     2 2 3g f d  ;  3

2

0

3

8
a a  


  ;      2T    ;     

  2 3

1 1 0 0 2

3

8
d a c a       
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2
4 2 2

0 0 2 2

0

9

64
A c


 



 
  

 
;    2 2 2

2 0 2 1 0 7 82

0

3

4
A c d d d


   



 
     

 
 ;  

   2 27 8
11 8 0 2 7 0 2

0 0

3 3
cos sin

4 4

d d
A d c d c
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 ; 

   
2 2 2

4 1 0 9 7 2 8 12A d d d g d g           ;     

         5 2 1 1 0 1 2 1 02 cos 2 sinA g g d g g d                   ; 
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Appendix-D.  Coefficients of equation (16) 
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Appendix-E. Coefficients of equation (20) 
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Appendix-F.  Coefficients of equation (25) 
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