
Asian Engineering Review
ISSN: 2409-6725
Vol. 1, No. 2, 26-35, 2014
http://asianonlinejournals.com/index.php/AER

* Corresponding Author

26

Investigating the Effects of Evolutionary Parametric Tuning

for Static Economic Load Dispatch Problems

Sunny Orike
1*

1
Department of Computer Science, Heriot-Watt University, Edinburgh, United Kingdom

Abstract

This work is licensed under a Creative Commons Attribution 3.0 License

Asian Online Journal Publishing Group

Contents
1. Introduction ... 27

2. Basic Evolutionary Algorithm .. 27

3. Methodology .. 29

4. Experiments and Results .. 30

5. Conclusion ... 35

References .. 35

This paper investigates the effects of evolutionary parametric tuning in realizing optimal solutions for

static economic load dispatch (SELD) problems in the electrical power industry. During evolutionary

algorithm (EA) implementation, design parameters need to be carefully chosen because of their

contributory influence on the success and overall performance of the EA. The paper considers instances

of the SELD problem involving minimum/maximum generation limits and power (load) balance.

Simulation results are provided for novel intelligent mutation approaches from this investigation, and

compared with reported results for other recent alternate algorithms in literature on two benchmark cases

involving 6 and 20 generating units, where they exhibited superior performances in terms of lowest cost

and meeting customers‟ demands.

 Keywords: Economic load dispatch, Evolutionary algorithm, Fitness function, Optimization, Simulation, Smart

mutation.

http://creativecommons.org/licenses/by/3.0/

Asian Engineering Review, 2014, 1(2): 26-35

27

1. Introduction
When building EAs, there are various design decisions that need to be made. The encoding type, population size,

crossover and mutation rates, etc, need to be carefully chosen, as their values have combined effects on the overall

performances of EAs. This is called “tuning” of evolutionary parameters [1]. There is a “parameter space” that

consists of all the possible sets of EA parameters. These are: population size, crossover rate and mutation rate. An

element of this space is a triple defined as (pop_size, cross_rate, mut_rate); e.g. (100, 0.8, 0.5) [2]. This varies

widely between different problems and encoding, and it is very difficult to arrive at specific values that work for all

EAs. De Jong determined systematically the effects of the different parameters on the performance of most EAs [2],

and concluded that the optimal parameters were: population size of 50 to 150 individuals, one-point crossover of rate

0.6 (and above) and a mutation rate in the region of 0.001. Grefenstette evolved an optimal set of parameters for De

Jong‟s EA, and discovered the best values as: (30, 0.95, 0.01) [3]. While these values were widely used and provided

good basis for much earlier work, however, as the range of problems expanded, it become clear that no single set of

parameters are universally optimal. Based on the work of Grefenstette, it was therefore suggested to begin an EA

search by considering a population size of 30 individuals, crossover rate of 0.6 and a mutation rate of 0.01 [1]. The

tuning of genetic parameters for the current work is based on this recommendation.

The Static Economic Load Dispatch (SELD) problems handle single load optimization period (typically, one

hour duration), in which the variables (generator outputs) do not vary with time. This paper investigates the effects of

these parameters in realizing optimal solutions for SELD problems in the electricity generation industry. It considers

instances of the problems, involving legal generation limits and load balance.

The remaining sections of the paper are organized as follows: Section 2 describes the workflow and various

processes of a basic evolutionary algorithm; section 3 presents the methodology adopted in this work, with the details

of the parametric tuning, including experimental design, simulation results and discussion made in chapter 4. Chapter

5 concludes the paper by reflecting on the findings and identification of potential future work.

2. Basic Evolutionary Algorithm
EAs are popular heuristic methods for realizing solutions of real-life optimization problems. Loosely reflecting

Darwin‟s evolutionary theory [2], EAs use selection, crossover and mutation operators to create environments where

populations of individuals (chromosomes) compete with one another, and only the fittest move from the current

generation to the subsequent ones. Realization of optimal solutions to optimization problems using conventional EA,

herein referred to as Basic EA (BEA) involves the following steps:

1. Encode the problem to be solved as a string of chromosomes

2. Generate an initial population of chromosomes;

3. Evaluate the fitness of each chromosome in the population;

4. Select parent chromosomes from the population to form breeding pair;

5. Perform crossover and mutation on selected parent chromosomes to form offspring;

6. Evolve (replace parent population with the offspring population);

7. If stopping criterion is not reached, go back to step 3.

2.1. Encoding a Problem
 EA works on a population of chromosomes. A chromosome is a string which represents a solution to a particular

problem. It is an abstraction of the deoxyribonucleic acid (DNA) chromosome in biology, which is conceived as a

string of letters in English language alphabets [4]. The exact position in a chromosome is called a gene, while the

value which is present at that location is called an allele. The way in which alleles are represented in a chromosome

is referred to as encoding. The most popular or classical encoding is the binary encoding (bit-string representation

with values 0 or 1). Others include: permutation encoding, real-value encoding and tree encoding [2, 5]. This paper

uses a real-value encoding, where allele values represent real power output of generators.

2.2. Generating Initial Population
The initial population of an EA is a set of potential/candidate solutions to the problem. There are many methods

of generating the initial population of chromosomes. The common method is random generation. Here, the allele

values are random numbers based on the defined boundaries - the lower and upper limits of each generator. While

this approach is efficient and provides a population covering the feasible solution space, the entire initial population

may also be infeasible. That is, subsequent generations may not be as the previous ones, resulting in good solutions

to evolve slowly. The initial population could also be the output of another search algorithm in a situation where a

hybrid approach is used.

2.3. Fitness Evaluation
One of the first steps in using an EA to solve a specific problem is to specify a fitness function. This calculates

the quality of candidate (potential) solutions to that problem. The fitness evaluation process uses this fitness function

to compute the quality of each solution. In analogy to biology, the chromosome is the genotype, while the solution it

represents is the phenotype [4]. The computation takes several factors and objectives into account, including the cost

minimization/maximization, penalty handling, resources utilization, run time, etc.

2.4. Selection of Parents
Selection mechanism is used to choose individuals (parents) from the initial population to go into the mating

pool (breeding), form where offspring is generated. This is the basis of new population. There are several selection

methods available for use in EA implementations, with each of them having their unique and distinct characteristic

features. An ideal selection method should be simple, computational efficient and suited for parallel implementation

[5, 6]. Tournament selection (the method used in this paper), satisfies the above criteria, and is a robust selection

Asian Engineering Review, 2014, 1(2): 26-35

28

method commonly used in most EA implementations [6]. The general motive behind all selection methods is to

provide a selection pressure in favor of better solutions, and balancing exploration against exploitation.

The tournament selection algorithm chooses t individuals from the population (uniformly at random, with

replacement), and the highly-fit of those individuals is the one returned as „selected‟. In the context of selecting a set

of N parents, this process is repeated N times. A tournament selection parameter t is used, which is called the

tournament size. A commonly used tournament size is two, and this selection method is referred to as “binary

tournament selection”. The following general work flow of a binary tournament selection:

(i) Choose two individuals at random from initial population;

(ii) Pick a random number, r (between 0 and 1);

(iii) If r < k (where k is a user-defined parameter, over 0.5 but less than 1), the fitter of the two individuals is

selected as parent to go into the mating pool;

(iv) Else, the less-fit individual is selected;

(v) Return the two individuals to the original population.

To prevent losing the best individuals of the population from one generation to the next, elitism is applied. This

technique copies the top N% of the present population on to the next generation (where N is the elitism rate).

Tournament selection is known to overcome the weaknesses of other selection methods, by preventing the

domination of highly-fit solutions, thereby wiping out all useful information which may be present in the less-fit

ones. It also eliminates too weak solutions which will result in too slow convergence.

2.5. Breeding
This is also known as recombination [4], a process which follows selection where the selected chromosomes

(parents) from the current population are recombined to form a successor population (children). This is to stimulate

the mixing of genetic composition of the parents when they reproduce. It is expected that more highly-fit

chromosomes will result from this process since selection is biased to favor chromosomes with higher fitness.

Breeding is achieved by applying genetic operators, which generate new candidate solutions by using parts of

existing candidate solutions (the selected parents). The common operators are crossover and mutation. Crossover

typically combines parts of two parent solutions to form two child solutions; however in general, such a

recombination operator can generate a child from more than two parents, and generate one or more children. In

contrast, a mutation operator always involves a single parent, and the child is a „mutation‟ of that parent – that is, it

will typically be the same as the parent except for changes in a small number of its alleles. Genetic operators are

invariably non-deterministic.

Crossover exchanges the genes (genetic composition) between two parents. It takes two parents and produces

two children, with the children inheriting a mix of genes from the parents. In most EAs, crossover occurs with a high

probability, called the crossover rate. Following selection of parents, a random number between 0 and 1 is generated

which is compared to the crossover rate. If the crossover rate is lower than the number, no crossover occurs and the

parents progress to the next phase unchanged. But if the crossover rate is greater or equal to the number, crossover is

done. One-point crossover is the simplest crossover operator. Other alternatives which are generalization of the one-

point crossover are: two-point and multi-point crossover operations. Another form, called uniform crossover [4],

selects uniformly between the allele values of parents at each point to form children. Figure 1 shows a one-point

crossover acting on a binary encoding.

Figure-1. One-point crossover for binary encoding

Mutation is a major source of genetic variation. In an EA design, the mutation operator is applied to the resulting

children solutions after the crossover, and allows new genetic patterns to be introduced, whether desirable or

undesirable. Mutation is a standalone operator that is applied with its own „mutation rate‟. EAs need mutation to

avoid genetic stagnation, because crossover cannot introduce new alleles to the population. Mutation usually occurs

with a low probability. There are different mutation operators for the different types of encoding methods. For binary

strings, it is implemented by randomly switching of bits, that is, 0 to 1 and 1 to 0. Figure 2 shows a one-point bit

flipping mutation for a binary encoding.

Asian Engineering Review, 2014, 1(2): 26-35

29

Figure-2. One-point, bit flipping mutation for binary encoding

For permutation strings, a mutation operator is designed such that the generated new strings fulfill the

requirement of permutation encoding. Two elements in the string are randomly selected and swapped with each

other, as shown in Figure 3, where “6” and “4” in the third and seventh positions are swapped with each other:

Figure-3. A mutation for permutation string

For value encoding string, the mutation operator randomly selects a number from the parent solution, changes its

magnitude defined by the programmer, and returns the result in the child solution as shown in Figure 4 below, where

the magnitude of the gene in the third position is changed from 12.99 to 13.57.

Figure-4. A mutation for value string

In its simplest form of operation, the genes undergoing mutation are „randomly‟ selected, but in other cases, they

could be „targeted‟. Other forms/types of mutation are: insertion, boundary, displacement, uniform mutation,

Gaussian mutations [4]. In insertion mutation, a gene is selected at a random position and inserted also randomly into

another position in the chromosome. Boundary randomly mutation replaces the gene with either lower or upper

bound. In displacement mutation, a randomly selected portion of the chromosome is moved as a block to another

location within the chromosome. Uniform mutation replaces the value of the selected gene with a uniform random

value chosen between user-defined upper and lower bounds. Non-uniform mutation increases the probability that the

amount of mutation will be close to zero with increased number of generation, Gaussian mutation adds a unit

Gaussian distributed random value to the chosen gene.

2.6. Evolution
The resulting child population after mutation replaces the old population, forming the successor population. The

selection and breeding processes are iterated, leading to a succession of „generations‟ of solutions. At each next

generation, the successor population becomes the source (parent) population. The EA goes through a number of

generations until one or more of the stopping criteria (reaching a fixed number of iterations or finding a sufficiently

good solution) are met, where the best chromosome in the resulting population is returned as the solution to the

problem.

3. Methodology
The SELD problem is an optimization task whose goal is to find the optimal combination of online power

generators that will minimize the total fuel cost to meet the total system‟s load demand while satisfying various

equality and inequality constraints. This is done over an appropriate short-term period, usually one hour. For a

thermal generating station, the unit fuel cost is shown in the quadratic form of:

)(
1

2




N

i
iiiic cPgbPgaFMin

 (1)

Where Fc is the total generating cost (fuel cost in $/h), Pgi is the power output of unit i, ai, bi and ci are the fuel

cost coefficients of unit i, N is the number of generating units. This is subject to the following generation and power

balance constraints:
maxmin
iii PgPgPg  (2)

Asian Engineering Review, 2014, 1(2): 26-35

30

0)(
1




LD

N

i
i PPPg

 (3)

PD is the total power demand and PL is the power loss, whose value is determined by means of the Kron‟s loss

formula [6]. The generalized fitness function given by:

 
 


N

i

N

i
LDiiic PPPgqPgfF

1 1

2
1)()(

 (4)

Where: q1 is a penalty factor which normalizes the power balance, assigning a high cost of penalty to affected

ones far from the feasible region [7-9]. The rule defined in (2) ensures that outputs of the generators are within the

legal minimum and maximum limits.

An intelligent approach of capturing gene-specific contributions to generation costs, and using this information

to help target the mutation operator, is at the heart of what is referred to, in this paper as a „smart evolutionary

algorithm‟ (SEA). The method basically combines BEA with a smart mutation algorithm. The description and basic

pseudo-code for SEA is shown in Orike and Corne [10]. Three SEAs (SEA1, SEA2 and SEA3), resulting from three

distinct variants of the smart mutator were implemented. SEA1 assumes full mutation and uses tournament selection

to decide which gene to mutate. In SEA2, there is a mutation probability, and when it is met, a smart mutation is

done; otherwise, a standard random mutation is done. SEA3 extends SEA2, but the value of the mutation probability

starts at 0, and gradually moves to 1 towards the maximum number of generations.

4. Experiments and Results
The tuning of the evolutionary parameters was done in respect of SEA1, SEA2 and SEA3 for the SELD problem

for two test cases involving 6 and 20 generating units. The effects on generation cost and meeting customers‟ load

demand were investigated, analyzed and compared with BEA and other contemporary approaches in the literature.

4.1. Case I: 6 Generating Units
In [6, 10-13], the SELD problem was solved for 6 thermal units. Using the data from this paper, experiments

were carried out to tune the evolutionary parameters - crossover rate, population size, tournament size and mutation

rate.

Table-1. Summary of results for different crossover rates,

averaged over 30 runs of SEA1 algorithm

Crossover Rate 0.6 0.7 0.8 0.9

Av Cost ($/h) 769.59 758.19 779.28 774.97

Std Dev 15.41 12.25 12.78 18.04

Table-2. Summary of results for different population sizes, averaged over 30 runs of SEA1

algorithm

Pop Size 10 20 30 40 50 100 150

Av Cost ($/h) 758.19 755.66 756.01 757.55 748.07 738.73 740.21

Std Dev 12.25 15.30 18.66 12.82 11.02 9.28 12.36

Table-3. Summary of results for different tournament sizes, averaged over 30

runs of SEA1 algorithm

Tournament Size 2 4 6 8 10

Av Cost ($/h) 738.73 742.22 741.01 741.64 744.64

Std Dev 9.28 11.00 10.45 13.28 12.77

Table-4. Summary of results for different smart mutation rates, averaged over 30 runs of SEA2 algorithm

Smart Mutation Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Av Cost ($/h) 757.83 759.09 758.23 761.37 752.58 749.54 760.61

Std Dev 15.07 15.62 14.56 13.92 15.33 13.34 13.83

Table-5. Best resources allocation for different crossover rates in a single run

of SEA2 algorithm

Units

Crossover Rate

0.6 0.7 0.8 0.9

1 173.15 168.89 120.10 95.48

2 20.77 24.02 68.39 56.82

3 19.41 48.30 31.12 77.99

4 19.48 10.91 13.31 30.84

5 21.57 15.56 21.22 25.67

6 29.21 16.58 30.03 26.79

Total Gen (MW) 283.61 284.29 284.18 283.58

Total Cost ($/h) 776.22 715.62 765.32 743.40

Loss (MW) 0.21 0.89 0.78 0.18

Total load demand was set at 283.40 MW and the experimental data, including loss coefficient B-matrix can be

retrieved from [6, 10]. Starting with SEA1, Tables I, II and III summarize the results of different values for crossover

Asian Engineering Review, 2014, 1(2): 26-35

31

rate, population size and tournament rate, averaged over 30 runs; while Table IV summarizes the results of different

mutation rates for SEA2.

Their respective resources allocations for the best solutions in the entire set of runs are shown in Tables V, VI,

VII and VIII. This is in terms of realizing the two main goals of the dispatch, namely: lower cost of generation, and

meeting load demand.

Table-6. Best resources allocation for different population sizes in a single run of SEA1 algorithm

Units Population Size

10 20 30 40 50 100 150

1 168.89 111.19 159.80 154.80 135.25 151.31 161.21

2 24.02 76.03 25.95 34.44 33.69 24.69 27.39

3 48.30 48.64 45.48 44.51 46.69 48.89 45.61

4 10.91 15.58 17.44 27.63 33.44 23.45 19.87

5 15.56 11.33 12.57 13.63 15.36 15.69 17.66

6 16.58 21.08 22.92 13.62 20.83 19.85 15.25

Total Gen (MW) 284.29 283.84 284.14 288.62 284.66 283.88 286.98

Total Cost ($/h) 715.62 730.56 713.66 724.54 720.60 709.60 719.72

Loss (MW) 0.89 0.44 0.74 5.22 1.26 0.48 3.58

Table-7. Best resources allocation for different tournament sizes in a single run

of SEA1 algorithm

Units Tournament Size

2 4 6 8 10

1 151.31 164.27 122.69 141.82 120.72

2 24.69 26.66 43.06 40.04 65.25

3 48.89 46.14 49.57 49.55 49.44

4 23.45 18.27 30.23 17.93 20.40

5 15.69 15.43 13.37 15.45 16.07

6 19.85 14.58 24.56 20.91 12.57

Total Gen (MW) 283.88 285.35 283.42 285.69 284.44

Total Cost ($/h) 709.60 711.74 713.65 719.00 715.55

Loss (MW) 0.48 1.95 0.02 2.29 1.04

Table-8. Best resources allocation for different smart mutation rates in a single run of SEA2 algorithm

Units Smart Mutation Rates

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1 128.96 137.99 151.71 152.54 133.95 168.99 150.30

2 51.11 29.72 22.55 34.07 47.37 30.54 34.34

3 49.49 49.95 44.18 34.97 41.67 40.75 36.45

4 12.73 11.54 20.18 22.78 17.48 11.68 33.87

5 26.51 25.51 16.84 19.01 21.62 15.76 12.98

6 17.44 29.86 28.33 20.55 21.36 15.71 15.76

Total Gen (MW) 286.23 284.58 283.79 283.92 283.44 283.44 283.69

Power Dem (MW) 283.40 283.40 283.40 283.40 283.40 283.40 283.40

Total Cost ($/h) 719.98 723.70 726.12 731.53 721.24 711.86 727.04

Loss (MW) 2.83 1.18 0.39 0.52 0.04 0.04 0.29

From these initial experiments, tuned values for population size, tournament size, crossover rate, and mutation

rates were respectively determined from the lowest costs realized with the parameters‟ values, given in Table IX,

alongside with a fixed number of generations of 100, penalty factor, q1= 50000, scaling factor, α = 0.1, as in Sayah

and Zehar [6], and elitism rate [14], which were used for the main experiment involving SEA1, SEA2 and SEA3, with

results shown in Table X, averaged over 30 runs.

Table-9. Experimental parameters and

values for the 6-unit problem

Parameters Values

Population size 100

Tournament size 2

Crossover rate 0.7

Smart mutation rate 0.6

No of Generations 100

Elitism Rate 10%

No. or runs 30

Asian Engineering Review, 2014, 1(2): 26-35

32

Table-10. Summary of results, for each of SEA1, SEA2

and SEA3 approaches on the 6-unit problem

 SEA1 SEA2 SEA3

Ave Cost ($/h) 738.73 749.54 744.49

Std Dev 13.74 13.34 10.57

Min Cost ($/h) 709.60 711.86 710.13

Max Cost ($/h) 759.20 766.97 758.97

To further demonstrate the efficiency of the SEAs, the distribution pattern of the best solutions in each of the 30

runs was made, as shown in Figure 5, which alongside Table X shows that the range of variation of the costs from

each independent run is relatively small, and equally distributed between the minimum and maximum costs.

Figure-5. Distribution of generation costs for SEA1, SEA2 and SEA3, on the 6-unit problem

The results of SEA1, SEA2 and SEA3 were compared with BEA [10], Differential Evolution [6], Genetic

Algorithm [6], Successive Linear Programming [12] and the Quasi-Newton Method [11]. Table XI summarizes the

comparison results based on the best resources allocation to the units, which shows superior performance of the three

SEAs in terms of both lower generation costs and lower power losses. All the three SEAs performed very well on

this problem, having low total cost of $709.60/h, $711.86/h and $710.13/h respectively for SEA1, SEA2 and SEA3;

and reduced power losses of 0.48MW, 0.048MW and 1.0MW respectively.

Table-11. Best resources allocation and comparison with other approaches on the 6-unit problem

Units SEA1 SEA2 SEA3 BEA [10] DE [6] SLP [12] GA [6] QN [11]

1 151.31 168.99 130.44 171.58 177.51 175.25 179.37 170.24

2 24.69 30.54 41.12 49.26 48.61 48.34 44.24 44.95

3 48.89 40.75 49.63 22.63 20.91 21.21 24.61 28.90

4 23.45 11.68 27.55 21.20 21.64 23.60 19.90 17.48

5 15.69 15.76 19.45 12.73 12.47 12.25 10.71 12.17

6 19.85 15.71 61.21 14.17 12.02 12.33 14.09 18.47

Total Gen (MW) 283.88 283.44 284.40 292.11 293.16 292.98 292.92 292.21

Total Dem (MW) 283.40 283.40 283.40 283.40 283.40 283.40 283.40 283.40

Loss (MW) 0.48 0.04 1.00 8.71 9.76 9.58 9.52 8.81

Total Cost ($/h) 709.60 711.86 710.13 801.30 803.07 803.08 803.69 807.78

4.2. Case II: 20 Generating Units
In [10, 14, 15], the SELD problem was solved for 20 generating units, investigating the performance of SEA in

larger problem case. The total load demand was 2500 MW, and the experimental data, can be retrieved from [10, 14,

15]. Several initial experiments were performed to select appropriate values for scaling factor (α) and load balance

penalty factors (q1). Starting with SEA1, and using the previously tuned values of the parameters from the

experiments involving 6 units, Tables XII and XIII summarize the results of tuning q1 and α, from where the values:

50,000 and 0.2 were selected respectively, average over 30 runs. Their respective best resources allocations in the

entire runs are shown in Tables XIV and XV, in terms of lower cost of generation and meeting load demand.

Table-12. Summary of results for tuning power balance penalty factor (q1), on the 20-unit problem for SEA1

 q1

5 10 50 500 5,000 50,000 500,000

Ave Cost ($/h) 61552.11 61705.44 61782.95 61745.74 61600.49 61108.99 61710.03

Std Dev 667.18 497.58 771.90 795.51 647.75 547.51 740.68

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

Run number

T
o

ta
l

C
o

st
s

($
)

SEA1

SEA2

SEA3

Asian Engineering Review, 2014, 1(2): 26-35

33

Table-13. Summary of results for tuning scaling factor on the 20-unit problem for SEA1

 α

 0.1 0.2 0.3 0.4 0.5

Ave Cost ($/h) 61569.85 61108.99 61470.32 61487.66 61664.60

Std Dev 807.29 547.51 570.23 672.05 679.05

 α

0.6 0.7 0.8 0.9 1.0

Ave Cost($/h) 61255.18 61371.29 61743.99 61406.48 61900.04

Std Dev 901.48 625.59 501.21 541.59 1097.01

Table14. Best resources allocation for diff. power balance penalty factor, on the 20-unit problem for SEA1

Units

q1

5 10 50 500 5,000 50,000 500,000

1 541.87 318.62 488.71 390.97 307.89 212.08 386.69

2 191.59 155.34 65.41 88.84 125.65 75.33 101.72

3 100.73 80.44 112.53 69.68 108.83 159.53 70.46

4 151.07 198.61 96.77 73.51 101.43 153.53 78.34

5 107.58 140.25 76.50 80.94 64.88 145.30 126.46

6 39.25 98.89 53.54 21.59 36.07 31.89 59.64

7 120.19 107.13 91.99 104.19 76.19 41.08 101.40

8 68.31 81.04 149.31 146.89 129.49 142.45 61.10

9 146.19 162.19 130.33 122.25 119.11 74.34 127.23

10 82.06 33.78 72.61 130.62 148.31 117.10 52.56

11 131.99 207.13 221.71 207.83 277.63 281.14 226.03

12 197.05 210.50 388.51 431.27 469.72 413.08 451.76

13 83.52 154.80 82.43 152.44 109.93 96.47 125.94

14 125.21 110.62 98.31 43.36 96.66 127.99 80.99

15 116.68 117.95 159.69 142.64 118.09 79.41 172.67

16 49.59 48.05 24.31 35.50 28.30 40.04 45.38

17 46.94 46.62 33.79 52.43 32.63 53.01 43.51

18 61.74 76.90 35.79 87.36 35.63 110.82 44.70

19 53.56 72.57 71.09 60.75 60.41 70.10 95.52

20 86.08 83.21 52.49 70.59 55.11 75.77 54.99

Total Gen (MW) 2501.19 2504.64 2505.83 2505.65 2501.96 2500.22 2507.09

Total Dem (MW) 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00

Total Cost ($/h) 60801.21 60999.65 60692.22 60711.04 60720.35 60522.37 60580.86

Loss (MW) 1.19 4.64 5.83 5.65 1.96 0.22 7.09

Table-15. Best resources allocation for different scaling factor, on the 20-unit problem, for power balance

penalty factor (q1) = 50,000 for SEA1

Units α

0.1 0.2 0.4 0.6 0.8 1.0

1 306.73 212.08 253.32 582.80 533.40 388.85

2 151.69 75.33 131.13 96.93 112.56 171.84

3 116.50 159.53 148.42 54.50 124.79 176.84

4 174.69 153.53 108.47 146.56 103.17 176.10

5 77.89 145.30 58.49 142.65 94.62 81.16

6 73.81 31.89 57.68 43.12 52.25 28.91

7 65.13 41.08 120.67 105.69 91.98 93.04

8 79.19 142.45 99.26 50.54 85.64 107.64

9 129.16 74.34 150.52 136.80 53.21 166.47

10 105.37 117.10 104.92 62.43 148.29 92.87

11 235.31 281.14 273.32 158.88 121.28 138.71

12 439.05 413.08 296.66 354.77 410.90 254.69

13 73.28 96.47 130.16 139.27 53.70 97.55

14 125.38 127.99 32.20 83.78 96.33 121.59

15 61.55 79.41 122.51 46.42 116.21 98.93

16 57.53 40.04 74.00 29.39 47.11 45.91

17 39.44 53.01 81.92 38.52 59.62 75.61

18 68.59 110.82 99.23 118.97 66.54 76.74

19 52.38 70.10 81.77 47.14 78.88 52.61

20 20.10 75.77 79.32 65.61 57.07 53.99

Total Gen (MW) 2501.78 2500.22 2503.97 2504.77 2507.54 2500.05

Total Dem (MW) 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00

Total Cost ($/h) 60837.01 60522.37 61054.07 60576.81 60850.22 61028.95

Loss (MW) 1.78 0.22 3.97 4.77 7.54 0.05

Asian Engineering Review, 2014, 1(2): 26-35

34

The tuned values α, q1, and those of tournament size, crossover rate, mutation rate from experiments involving 6

units; including the same population size and number of generations from [14, 15] (for uniformity of equal number

of fitness evaluations) are as shown in Table XVI, which were used for the main experiment, with results shown in

Table XVII and Figure 6, average over 30 runs.

Table-16. Experimental parameters

and values for the 20-unit problem

Parameters Values

Population size 30

Tournament size 2

Crossover rate 0.7

Smart mutation rate 0.6

No of Generations 100

Elitism Rate 10%

α 0.2

q1 50,000

Figure-6. Distribution of costs for SEA1, SEA2 and SEA3 on the 20-unit problem

Table-17. Summary of results, and comparison with other approaches on the 20-unit problem

 SEA1 SEA2 SEA3 BEA [10] PSO [15] LIM [14] HNN [14]

Av Cost ($/h) 60,492.99 60,671.28 60,659.80 61,654.76 61,171.84 - -

Std Dev 464.65 442.11 331.24 515.57 532.44 - -

Max Cost ($/h) 61,422.78 61,359.72 61,498.31 62,648.52 63,184.63 - -

Min Cost ($/h) 59,588.38 59,687.80 60,003.02 60,727.19 60,760.25 62,456.64 62,456.63

Table-18. Best resources allocation and comparison with other approaches on the 20-unit problem

Units SEA1 SEA2 SEA3 BEA [10] PSO [15] LIM [14] HNN [14]

1 289.17 482.25 598.68 520.89 536.32 512.7805 512.7804

2 143.69 186.31 90.90 115.14 106.56 169.1033 169.1035

3 139.32 77.08 63.61 122.24 98.71 126.8898 126.8897

4 53.29 88.32 87.35 94.36 117.32 102.8657 102.8656

5 110.31 100.97 113.77 86.18 67.08 113.6836 113.6836

6 93.32 23.15 46.52 60.39 51.47 73.5710 73.5709

7 121.79 97.58 118.37 56.63 47.73 115.2878 115.2876

8 116.38 122.65 120.57 87.13 82.43 116.3994 116.3994

9 89.77 154.67 74.99 49.45 52.09 100.4062 100.4063

10 125.11 111.42 88.70 114.46 106.51 106.0267 106.0267

11 255.72 159.23 215.88 200.39 197.94 150.2394 150.2395

12 315.95 367.03 233.96 410.74 488.33 292.7648 292.7647

13 65.91 99.12 153.89 117.98 99.95 119.1154 119.1155

14 112.47 49.61 84.57 65.63 79.89 30.8340 30.8342

15 80.27 85.92 132.17 125.34 101.53 115.8057 115.8056

16 38.32 52.92 36.65 33.21 25.84 36.2545 36.2545

17 58.66 69.92 43.61 82.43 70.02 66.8590 66.8590

18 94.51 52.46 41.88 60.43 53.95 87.9720 87.9720

19 117.02 46.76 94.70 71.28 65.43 100.8033 100.8033

20 79.06 73.70 59.23 34.01 36.26 54.3050 54.3050

Total Gen (MW) 2500.02 2501.06 2500.00 2508.31 2512.33 2591.9671 2591.97

Total Dem (MW) 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00

Total Cost ($/h) 60846.10 60609.72 60483.14 60727.19 60760.25 62456.64 62456.63

Loss (MW) 0.02 1.06 0.00 8.31 12.33 91.97 91.97

50000

52000

54000

56000

58000

60000

62000

0 5 10 15 20 25 30

Run number

To
ta

l C
os

ts
 ($

)

SEA1

SEA2

SEA3

Asian Engineering Review, 2014, 1(2): 26-35

35

Simulation of SEA1, SEA2 and SEA3 were compared with BEA [10], Particle Swarm Optimization (PSO) [15],

Lambda-Iteration Method (LIM) [14] and Hopfield Neural Network (HNN) [14], all with the same set of data.

Tables XVII and XVIII summarize the comparison results, including typical resources allocation. The

distribution curve of the best solutions in each of the 30 runs as shown in Figure 6, alongside Table XVII shows that

the range of variation of the total costs from each run is relatively smallest in SEA3. From Table XVII, SEA1 has

both lowest average cost and lowest minimum cost. Generally, the results of SEA1, SEA2 and SEA3 were better

than those of the other approaches. In Table XVIII, SEA3 has the lowest generation cost of $60483/h; against

$60609.72/h, $60727.19/h, $60760.25/h, $60846.10/h, $62456.63/h and $62456.64/h respectively for SEA2, BEA,

PSO, SEA1, LIM and HNN. No power was lost in SEA3, as it exactly generated the customers‟ load demand of

2500MW; against 0.02MW, 1.06MW, 8.3139MW, 12.33MW, in SEA1, SEA2, BEA, PSO respectively, and

91.97MW in both LIM and HNN. From the above results, SEA1 and SEA3 appear to be the best optimizing

approach in this test case. As noted in Table XVIII, the generation cost of $60,483/h from the resources allocation

of SEA3 is the best ever seen in the literature to date for this problem, in terms of lowest cost and meeting load

demand, with no power loss.

5. Conclusion
The paper performed rigorous tuning of evolutionary parameters to select values for experimental runs in SELD

problems on two benchmark cases involving 6 and 20 generating units, but with a focus on the larger case.

Simulation results of three novel EAs (SEA1, SEA2 and SEA3) were compared with those reported for a range of

recent alternative algorithms, where they exhibited superior performances. As prospective areas of future work in

this optimization problem, there are many opportunities to investigate variations in the general approach to the

algorithm. When using a smart mutator, it is possible that in some problems, the chosen genes will cycle, e.g.

mutating gene 1, moves the problem to gene 3, and mutating gene 3 next time moves the problem moves back to

gene 1, and so on. The current work focused on performance in the application domain, and did not investigate this

issue in depth. Future work could attempt a detailed investigation of this phenomenon, leading to designs for new,

adaptive approaches to smart mutation that could avoid this situation. A record could also be kept of which genes

that have been involved in smart mutation. This could be a variant of SEA1, such that when doing the tournament

selection, a generator that was involved in smart mutation in the previous generation should not allowed to be

selected.

References
[1] A. Rangel-Merino, J. L. López-Bonilla, and R. Linares y Miranda, "Optimisation method based on genetic algorithms," Apeiron, Roy

Keys Inc, vol. 12, pp. 393–408, 2005.

[2] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, 1st ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc, 1989.

[3] J. Cogley, "Designing implementing and optimising an object-oriented chess system using a genetic algorithm in java and its critical

evaluation," Research Report, The Open University, 2001.

[4] J. McCall, "Genetic algorithms for modelling and optimisation," Journal of Computational and Applied Mathematics, Elsevier, vol.

184, pp. 205 – 222, 2005.

[5] B. L. Miller and D. E. Goldberg, "Genetic algorithms, tournament selection, and the effects of noise," Complex Systems, vol. 9, pp.

193 – 212, 1995.

[6] S. Sayah and K. Zehar, "Using evolutionary computation to solve the economic load dispatch problem," Leonardo Journal of

Sciences, vol. 12, pp. 67 – 78, 2008.

[7] V. R. Pandi and B. K. Panigrahi, "Dynamic economic load dispatch using hybrid swarm intelligence based harmony search

algorithm," Journal of Expert Systems with Applications, vol. 38, pp. 8509 – 8514, 2011.

[8] R. Balamurugan and S. Subramanian, "Differential evolution-based dynamic economic dispatch of generating units with valve-point

effects," Electrical Power Components and Systems, vol. 36, pp. 828 – 843, 2008.

[9] S. Orike and D. W. Corne, "An evolutionary algorithm for bid-based dynamic economic load dispatch in a deregulated electricity

market," presented at the Y. Jin and S. A. Thomas (Eds.). 13th IEEE UK Workshop on Computational Intelligence (UKCI 2013),

University of Surrey, Guildford, 9th – 11th September 2013, 2013.

[10] S. Orike and D. W. Corne, "Improved evolutionary algorithms for economic load dispatch optimisation problems," in Proceedings of

12th IEEE UK Workshop on Computational Intelligence (UKCI), Edinburgh, 2012.

[11] T. Bouktir, L. Slimani, and M. Belkacemi, "A genetic algorithm for solving the optimal power flow problem," Leonardo Journal of

Sciences, vol. 4, pp. 44 – 58, 2004.

[12] S. Sayah, K. Zehar, and N. Bellaouel, "A successive linear programming based method for solving optimal power flow problems," in

Proceedings of the 1st International Meeting on Electronics and Electrical Science and Engineering, University of Djelfa, Algeria,

2006.

[13] S. Orike and D. W. Corne, "Constrained elitist genetic algorithm for economic load dispatch: Case study on Nigerian power system,"

International Journal of Computer Applications, Foundation of Computer Science, New York, USA, vol. 76, pp. 27 – 33, 2013.

[14] C. T. Su and C. T. Lin, "New approach with a hopfield modelling framework to economic dispatch," IEEE Transactions on Power

Systems, vol. 15, pp. 541 – 545, 2000.

[15] L. S. Coelho and C. Lee, "Solving economic load dispatch problems in power systems using chaotic and gaussian particle swarm

optimisation approaches," International Journal of Electrical Power & Energy Systems, vol. 30, pp. 297 – 307, 2008.

Views and opinions expressed in this article are the views and opinions of the authors, Asian Engineering Review shall not be responsible or answerable

for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.

